
CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

Homework 4

Version: 1.0
Version Release Date: 2022-03-19
Deadline: April 1st, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs1. You can produce
the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

See the syllabus on the course website2 for detailed policies. You may ask questions about the
assignment on Piazza3 with the tag hw4. Note that 10% of the homework mark (worth 1 pt) may
be removed for a lack of neatness.

The teaching assistants for this assignment are Denny Wu and Emmy Fang.
mailto:csc413-2022-01-tas@cs.toronto.edu

1https://markus.teach.cs.toronto.edu/2022-01/courses/16/
2https://uoft-csc413.github.io/2022/assets/misc/syllabus.pdf
3https://piazza.com/utoronto.ca/winter2022/csc4132516/

1

mailto:csc413-2022-01-tas@cs.toronto.edu
https://markus.teach.cs.toronto.edu/2022-01/courses/16/
https://uoft-csc413.github.io/2022/assets/misc/syllabus.pdf
https://piazza.com/utoronto.ca/winter2022/csc4132516/

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

1 RNNs and Self Attention

For any successful deep learning system, choosing the right network architecture is as important
as choosing a good learning algorithm. In this question, we will explore how various architectural
choices can have a significant impact on learning. We will analyze the learning performance from
the perspective of vanishing /exploding gradients as they are backpropagated from the final layer
to the first.

1.1 Warmup: A Single Neuron RNN

Consider an n layered fully connected network that has scalar inputs and outputs. For now, assume
that all the hidden layers have a single unit, and that the weight matrices are set to 1 (because
each hidden layer has a single unit, the weight matrices have a dimensionality of R1×1).

1.1.1 Effect of Activation - Sigmoid [0.5pt]

Lets say we’re using the sigmoid activation. Let x be the input to the network and let f : R1 → R1

be the function the network is computing. Do the gradients necessarily have to vanish or explode as
they are backpropagated? Answer this by showing that 0 ≤ |∂f(x)∂x | ≤ (14)

n, where n is the number
of layers in the network.

1.1.2 Effect of Activation - Tanh [0 pt]

Instead of sigmoid, now lets say we’re using the tanh activation (otherwise the same setup as in
1.1.1). Do the gradients necessarily have to vanish or explode this time? Answer this by deriving
a similar bound as in Sec 1.1.1 for the magnitude of the gradient.

1.2 Matrices and RNN

We will now analyze the recurrent weight matrices under Singular Value Decomposition. SVD is
one of the most important results in all of linear algebra. It says that any real matrix M ∈ Rmxn

can be written as M = UΣV T where U ∈ Rmxm and V ∈ Rnxn are square orthogonal matrices, and
Σ ∈ Rmxn is a rectangular diagonal matrix with nonnegative entries on the diagonal (i.e. Σii ≥ 0
for i ∈ {1, . . . ,min(m,n)} and 0 otherwise). Geometrically, this means any linear transformation
can be decomposed into a rotation/flip, followed by scaling along orthogonal directions, followed
by another rotation/flip.

1.2.1 Gradient through RNN [0.5pt]

Let say we have a very simple RNN-like architecture that computes xt+1 = tanh(Wxt). You can
view this architecture as a deep fully connected network that uses the same weight matrix at each
layer. Suppose the largest singular value of the weight matrix is σmax(W) = 1

2 . Show that the
largest singular value of the input-output Jacobian has the following bound:

0 ≤ σmax(
∂xn
∂x1

) ≤ (
1

2
)n−1

(Hint: if C = AB, then σmax(C) ≤ σmax(A)σmax(B). Also, the input-output Jacobian is the
multiplication of layerwise Jacobians).

2

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

1.3 Self-Attention

In a self-attention layer (using scaled dot-product attention), the matrix of outputs is computed
as:

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V

where Q,K, V ∈ Rn×d are the query, key, and value matrices, n is the sequence length, and dm
is the embedding dimension.

1.3.1 Complexity of Self-Attention [0.5pt]

Recal from Lecture 8, the total cost for scaled dot-product attention scales quadratically with the
sequence length n, i.e., O

(
n2

)
. We can generalize the attention equation for any similarity function

sim() to the following:

αi =

∑n
j=1 sim(Qi,Kj)Vj∑n
j=1 sim(Qi,Kj)

(1.1)

where the subscript of a matrix represents the i-th row as a vector. This is equivalent to the

Softmax attention if we substitute sim(q, k) = exp(q
T k√
dk
). Note that for this generalized equation

to be a valid attention equation, the only constraint on sim() is that it need to be non-negative,
which is true for all kernel functions k(x, y) = ϕ(x)Tϕ(y), for some feature mapping ϕ(). Show that
by applying kernel functions, attention can be calculated with linear complexity (i.e., O(n)).

Hint: Sub in the kernel function for the similarity function into Eq 1.1. Group the terms based
on their subscript (i.e., i and j). You can find out more information about applying the kernel
function in Katharopoulos et al. [2020]

1.3.2 Linear Attention with SVD [1pt]

It has been empirically shown in Transformer models that the context mapping matrix P =

softmax
(
QK⊤
√
dk

)
often has a low rank. Show that if the rank of P is k and we already have access

to the SVD of P , then it is possible to compute self-attention in O(nkd) time.

1.3.3 Linear Attention by Projecting [1pt]

Suppose we ignore the Softmax and scaling and let P = QK⊤ ∈ Rn×n. Assume P is rank k. Show
that there exist two linear projection matrices C,D ∈ Rk×n such that PV = Q(CK)⊤DV and the
right hand side can be computed in O(nkd) time. Hint: Consider using SVD in your proof.

3

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

2 Policy gradients and black box optimization

Very often we have a function f that does not give us useful gradient information: input or output
may be discrete; f may be piecewise constant, nowhere differentiable, or have pathological gradients
(e.g., a discontinuous saw wave on an incline, whose gradient always points away from the global
optimum); or f may be a black box that we cannot backpropagate through. For example, we may
have a phone app that labels photos as cats or dogs. This situation is the default in Reinforcement
Learning (RL), where we can execute the environment dynamics, but we cannot see or control their
internals.

We still, however, want to optimize some score function J [f] : X → R. For example, in RL, we
want to learn a policy that maximizes the non-differentiable environment reward.

When using the REINFORCE strategy, we replaced the θ optimization task with a Monte-Carlo
approximation. One of the key factors for a successful REINFORCE application is the variance.
The higher the variance, the more “noisy” the gradient estimates will be, which can slow down the
optimization process. In this section we will derive the variance of the REINFORCE estimator for
a simple toy task.

Consider a loss function, f(ã) which is the zero-one loss of the logistic regression output, p(a|θ).
The input vector has D independent scalar features, xd. We evaluate the performance of the
classifier by sampling from the output of the sigmoid µ. The loss function J(θ) can be written as:

µ = σ

(D∑
d=1

θdxd

)
, (2.1)

p(a|θ) = Bernoulli(µ) =

{
µ a = 1

1− µ a = 0
, (2.2)

ã ∼ p(a|θ), (2.3)

f(ã) =

{
1 ã = 1

0 ã = 0
, (2.4)

J(θ) = Eã∼p(a|θ)[f(ã)]. (2.5)

2.1 Closed form expression for REINFORCE estimator [1pt]

Recall from above that the expression for REINFORCE estimator is:

∇θJ [θ] = Eã∼p(a|θ)

[
f(ã)

∂

∂θ
log p(a = ã|θ)

]
(2.6)

We can denote the expression inside the expectation as g[θ,x]:

g[θ, ã] = f(ã)
∂

∂θ
log p(a = ã|θ), ã ∼ p(a|θ) (2.7)

For this question, derive a closed form for the g[θ, ã] as a deterministic function of ã, µ, θ, and
xd.

Hint: Substitute in the log likelihood of the Bernoulli distribution.

2.2 Variance of REINFORCE estimator [1pt]

We will derive the variance of the REINFORCE estimator above. Since the gradient is is D-
dimensional, the covariance of the gradients will be D × D matrix. In this question, we will

4

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

only consider the variance with respect to the first parameter, i.e. V[ĝ[θ, ã]1] which scalar value
corresponding to the first element in the diagonal of the covariance matrix. Derive the variance of
the gradient estimator as a function of the first parameter vector: V[ĝ[θ, ã]1], as a function of µ, θ,
and xd.

Hint: The second moment of a Bernoulli random variable is µ(1− µ).

2.3 Convergence and variance of REINFORCE estimator [0 pt]

Comment on the variance in Part 2.2. When do we expect learning to converge slowly in terms of
the output of the logistic regression model, µ?

3 Graphs and GNNs

3.1 Properties of the Graph Laplacian

Consider an unweighted and undirected graph G = (V,E), where the vertex set is given as V =
[n] = {1, 2, 3, ..., n}, and the edge set E contains tuples of integers (u, v) for u, v ∈ V , which indicate
the presence of an edge between vertices u and v. Recall the definition of the adjacency matrix and
the degree matrix,

A(u, v) =

{
1, if (u, v) ∈ E.

0, otherwise.
D(u, v) =

{
deg(u), u = v.

0, otherwise.

The graph Laplacian matrix is defined as L = D−A ∈ Rn×n.

3.1.1 [0.5pt]

Show that for any x ∈ Rn,

x⊤Lx =
∑

(u,v)∈E

(x(u)− x(v))2, (3.1)

where x(u) denotes the u-th entry of x.

3.1.2 [0.5pt]

Show that the smallest eigenvalue λmin(L) = 0. Identify the corresponding eigenvector.
Hint: First argue that L is positive semi-definite. Then use properties of A,D to find a vector v
such that Lv = 0.

3.1.3 [0pt]

Show that if G has k connected components, then the multiplicity of the smallest eigenvalue of L
is exactly k.

5

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

3.2 Matrix Normalization

Observe that the eigenvalues of the matrices A,L can scale with the degree of vertices in the
graph (which may be very large in practical settings). To address this problem, we introduce the
normalized adjacency matrix and the normalized Laplacian,

Ã = D−1/2AD−1/2; L̃ = D−1/2LD−1/2 = I− Ã.

As we will see, this normalization ensures that the largest eigenvalue of the two matrices remain
bounded. In the following, we take G to be a connected (unweighted and undirected) graph.

3.2.1 [0.5pt]

Show that the largest eigenvalue of the normalized Laplacian λmax(L̃) ≤ 2.
Hint: you may use the definition λmax(L̃) = max∥x∥=1 x

⊤L̃x for x ∈ Rn.

3.2.2 [0.5pt]

Show that for all i ∈ [n], we have |λi(Ã)| ≤ 1, that is, all the eigenvalues of Ã fall in the range
between −1 and 1.
Hint: apply the conclusion in 3.2.1.

3.2.3 [0pt]

Recall that a connected graph G = (V,E) is bipartite if and only if V can be partitioned into two
disjoint sets V1, V2 such that every edge in E only connects one vertex in V1 with one vertex in V2

(i.e., there is no edge between two vertices in V1, or two vertices in V2).
Show that if G is bipartite, then the largest eigenvalue λmax(L̃) = 2.

Hint: Take v ∈ Rn to be the leading eigenvector of L̃. For any (u, v) ∈ E, argue that we must have
v(u) + v(v) = 0 to achieve the equality in 3.2.1. Then show that this constraint can be satisfied
when G is bipartite.

3.2.4 [0pt]

Show that if λmax(L̃) = 2, then G must be bipartite.

3.3 Simplified Graph Convolutional Networks

We now consider a linearized graph convolutional network (GCN) in Wu et al. [2019]. This simpli-
fied GCN omits the nonlinear transformation of the features, but instead performs linear feature
propagation. Specifically, the feature matrix H at the k-th level is given as

H(k) = ÃH(k−1)Θ(k) = ÃkH(0)
k∏

i=1

Θ(i), (3.2)

where H(0) = X is the input features, Θ(i) are the trainable parameters in the GCN, and Ãk

denotes the k-th power of the normalized adjacency matrix4. A softmax nonlinearity is applied to
the output layer: Y = softmax(H(K)), where K is the total number of layers. Due to the linear

4The formulation in Wu et al. [2019] also includes a self-loop for all vertices; we ignore this feature for simplicity.

6

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

structure, we may also reparameterize the trainable parameters as
∏K

i=1Θ
(i) =: Θ, and hence the

prediction of the GCN is given as

Y = softmax
(
ÃKH(0)Θ

)
. (3.3)

3.3.1 [0.5pt]

Using the eigendecomposition, show that the matrix power ÃK =
∏K

i=1 Ã can be computed without
multiplying the matrix Ã for K times (which can be time-consuming when K is large).

3.3.2 [0.5pt]

For the linearized GCN (3.2), based on the eigenvalue properties in 3.2.2, argue in one or two
sentences: is it always beneficial to use a deeper model, i.e., increase the number of layers K?

3.4 Graph Attention Networks (GATs)

Graph Attention Network (GAT) is a novel convolution-style neural network. It operates on graph-
structured data and leverages masked self-attentional layers. In this question, we will look at
its Graph Attentional Layer. The input to the attention layer is the set of node features h =
{h⃗0, h⃗1, ..., h⃗|V |}, h⃗i ∈ RF , where |V | is the number of nodes, F is the number of features in each
node. In order to obtain more expressive power, we transform the input features using a shared
linear transformation, parameterized by a weight matrix W ∈ RF ′×F ,to higher-level features,
h′ = {h⃗′0, h⃗′1, ..., h⃗′|V |}, h⃗

′
i ∈ RF ′

. We can then calculate the importance of node j’s features to node

i using some scoring function eij = score(⃗h′i, h⃗
′
j). In this implementation, the attention mechanism is

a single-layer feedforward neural network (parameterized by a weight vector a⃗ ∈ R2F ′
) then followed

by a nonlinear activation function, LeakyReLU, as shown in Figure 1. To make the coefficients
comparable across different nodes, the attention scores eij need to be normalized across all choices
of j using the softmax function. To inject the graph structure into the mechanism, we perform
masked attention, i.e., we only compute eij for nodes j ∈ Ni, where Ni is some neighbourhood of
node i in the graph.

Figure 1: Attention Mechanism Velicković et al. [2018]

7

CSC413/2516 Winter 2022 with Professor Jimmy Ba & Professor Bo Wang Homework 4

3.4.1 Attention coefficients and Advantages of GAT [0.5pt]

Write out the equation for the coefficients αij computed by this attention mechanism and list one
advantage of GATs over vanilla Graph Convolution Networks.

Hint: You can use the notation [x⃗ ∥ y⃗] to denote concatenation between two vectors x⃗ and y⃗.

References

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. CoRR, abs/2006.16236, 2020. URL
https://arxiv.org/abs/2006.16236.

Petar Velicković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ. accepted as poster.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pages
6861–6871. PMLR, 2019.

8

https://arxiv.org/abs/2006.16236
https://openreview.net/forum?id=rJXMpikCZ

	RNNs and Self Attention
	Warmup: A Single Neuron RNN
	Effect of Activation - Sigmoid blue [0.5pt]
	Effect of Activation - Tanh [0 pt]

	Matrices and RNN
	Gradient through RNN blue [0.5pt]

	Self-Attention
	Complexity of Self-Attention blue [0.5pt]
	Linear Attention with SVD blue [1pt]
	Linear Attention by Projecting blue [1pt]

	Policy gradients and black box optimization
	Closed form expression for REINFORCE estimator blue [1pt]
	Variance of REINFORCE estimator blue [1pt]
	Convergence and variance of REINFORCE estimator [0 pt]

	Graphs and GNNs
	Properties of the Graph Laplacian
	blue [0.5pt]
	blue [0.5pt]
	[0pt]

	Matrix Normalization
	blue [0.5pt]
	blue [0.5pt]
	[0pt]
	[0pt]

	Simplified Graph Convolutional Networks
	blue [0.5pt]
	blue [0.5pt]

	Graph Attention Networks (GATs)
	Attention coefficients and Advantages of GAT blue [0.5pt]

