
CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Programming Assignment 2: Convolutional Neural Networks

Version: 1.5
Changes by Version:

• (v1.5)

– Added nn.Upsample references in Part A question 1

– Added hints in Part A question 3.

• (v1.4) Removed BatchNorm2d parameters from Part A question 3.

• (v1.3) Added BatchNorm2d references in part A.3.

• (v1.2) Fixed a few typos.

• (v1.1) Updated to new due date Feb. 18th.

Version Release Date: 2022-02-05
Due Date: Friday, Feb. 18th, at 11:59pm
Based on an assignment by Lisa Zhang

Submission: You must submit 2 files through MarkUs1: a PDF file containing your writeup, titled
a2-writeup.pdf, and your code file a2-code.ipynb. Your writeup must be typed.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

The teaching assistants for this assignment are Stephen Zhao and Yun-Chun Chen. Send your email
with subject “[CSC413] PA2 ...” to csc413-2022-01-tas@cs.toronto.edu or post on Piazza with the
tag pa2.

1https://markus.teach.cs.toronto.edu/2022-01/courses/16
2https://uoft-csc413.github.io/2022/assets/misc/syllabus.pdf

1

mailto:csc413-2022-01-tas@cs.toronto.edu
https://markus.teach.cs.toronto.edu/2022-01/courses/16
https://uoft-csc413.github.io/2022/assets/misc/syllabus.pdf


CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Introduction

This assignment will focus on the applications of convolutional neural networks in various image
processing tasks. The starter code is provided as a Python Notebook on Colab (https://colab.
research.google.com/github/uoft-csc413/2022/blob/master/assets/assignments/a2-code.

ipynb). First, we will train a convolutional neural network for a task known as image colourization.
Given a greyscale image, we will predict the colour at each pixel. This is a difficult problem for
many reasons, one of which being that it is ill-posed: for a single greyscale image, there can be
multiple, equally valid colourings. In the second half of the assignment, we will perform fine-tuning
on a pre-trained object detection model.

Image Colourization as Classification

In this section, we will perform image colourization using three convolutional neural networks
(Figure 1). Given a grayscale image, we wish to predict the color of each pixel. We have provided
a subset of 24 output colours, selected using k-means clustering3. The colourization task will be
framed as a pixel-wise classification problem, where we will label each pixel with one of the 24
colours. For simplicity, we measure distance in RGB space. This is not ideal but reduces the
software dependencies for this assignment.

We will use the CIFAR-10 data set, which consists of images of size 32x32 pixels. For most
of the questions we will use a subset of the dataset. The data loading script is included with the
notebooks, and should download automatically the first time it is loaded.

Helper code for Part A is provided in a2-code.ipynb, which will define the main training loop
as well as utilities for data manipulation. Run the helper code to setup for this question and answer
the following questions.

Part A: Pooling and Upsampling (2 pts)

1. Complete the model PoolUpsampleNet, following the diagram in Figure 1a. Use the Py-
Torch layers nn.Conv2d, nn.ReLU, nn.BatchNorm2d4, nn.Upsample5, and nn.MaxPool2d.
Your CNN should be configurable by parameters kernel, num in channels, num filters,
and num colours. In the diagram, num in channels, num filters and num colours are de-
noted NIC, NF and NC respectively. Use the following parameterizations (if not specified,
assume default parameters):

• nn.Conv2d: The number of input filters should match the second dimension of the input
tensor (e.g. the first nn.Conv2d layer has NIC input filters). The number of output

3https://en.wikipedia.org/wiki/K-means_clustering
4https://gauthamkumaran.com/batchnormalization/amp/
5https://machinethink.net/blog/coreml-upsampling/

2

https://colab.research.google.com/github/uoft-csc413/2022/blob/master/assets/assignments/a2-code.ipynb
https://colab.research.google.com/github/uoft-csc413/2022/blob/master/assets/assignments/a2-code.ipynb
https://colab.research.google.com/github/uoft-csc413/2022/blob/master/assets/assignments/a2-code.ipynb
https://en.wikipedia.org/wiki/K-means_clustering
https://gauthamkumaran.com/batchnormalization/amp/
https://machinethink.net/blog/coreml-upsampling/


CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Image

Conv2d 

BatchNorm2d 

ReLU

MaxPool2d 

Conv2d 

BatchNorm2d 

ReLU

MaxPool2d 

Conv2d 

BatchNorm2d 

ReLU

Upsample 

Conv2d 

BatchNorm2d 

ReLU

Upsample 

Conv2d 

[BS, NIC, 32, 32]

[BS, NF, 16, 16]

[BS, 2NF, 8, 8]

[BS, NF, 16, 16]

[BS, NC, 32, 32]

[BS, NC, 32, 32]

(a) PoolUpsampleNet

Image

Conv2d 

[BS, NIC, 32, 32]

BatchNorm2d 

ReLU

Conv2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

Conv2d 

[BS, NF, 16, 16] 

[BS, 2NF, 8, 8]

[BS, NF, 16, 16]

[BS, NC, 32, 32]

[BS, NC, 32, 32]

(b) ConvTransposeNet

Image

Conv2d 

[BS, NIC, 32, 32]

BatchNorm2d 

ReLU

Conv2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

ConvTranspose2d 

BatchNorm2d 

ReLU

Conv2d 

[BS, NF, 16, 16] 

[BS, 2NF, 8, 8]

[BS, NF + NF, 16, 16]

[BS, NIC + NC, 32, 32]

[BS, NC, 32, 32]

(c) UNet

Figure 1: Three network architectures that we will be using for image colourization. Numbers
inside square brackets denote the shape of the tensor produced by each layer: BS: batch size,
NIC: num in channels, NF: num filters, NC: num colours.

3



CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

filters should match the second dimension of the output tensor (e.g. the first nn.Conv2d
layer has NF output filters). Set kernel size to parameter kernel. Set padding to the
padding variable included in the starter code.

• nn.BatchNorm2d: The number of features should match the second dimension of the
output tensor (e.g. the first nn.BatchNorm2d layer has NF features).

• nn.Upsample: Use scaling factor = 2.

• nn.MaxPool2d: Use kernel size = 2.

Note: grouping layers according to the diagram (those not separated by white space) using
the nn.Sequential containers will aid implementation of the forward method.

2. Run main training loop of PoolUpsampleNet. This will train the CNN for a few epochs using
the cross-entropy objective. It will generate some images showing the trained result at the
end. Do these results look good to you? Why or why not?

Answer
Fill in

3. Compute the number of weights, outputs, and connections in the model, as a function of NIC,
NF and NC. Compute these values when each input dimension (width/height) is doubled.
Report all 6 values.

Note:

(a) Please ignore biases when answering the questions.

(b) Please ignore nn.BatchNorm2d when answering the number of weights, outputs and
connections, but we still accept answers that do.

Hint:

(a) nn.Upsample does not have parameters (this will help you answer the number of weights).

(b) Think about when the input width and height are both doubled, how will the dimension
of feature maps in each layer change? If you know this, you will know how dimension
scaling will affect the number of outputs and connections.

Answer

Please assume the kernel size is k when filling in the answers below:

• When each input dimension (width/height) is not doubled (original input)

– Number of weights:

4



CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

– Number of outputs:

– Number of connections:

• When each input dimension (width/height) is doubled

– Number of weights:

– Number of outputs:

– Number of connections:

Part B: Strided and Transposed Dilated Convolutions (3 pts)

For this part, instead of using nn.MaxPool2d layers to reduce the dimensionality of the tensors, we
will increase the step size of the preceding nn.Conv2d layers, and instead of using nn.Upsample

layers to increase the dimensionality of the tensors, we will use transposed convolutions. Transposed
convolutions aim to apply the same operations as convolutions but in the opposite direction. For
example, while increasing the stride from 1 to 2 in a convolution forces the filters to skip over
every other position as they slide across the input tensor, increasing the stride from 1 to 2 in a
transposed convolution adds “empty” space around each element of the input tensor, as if reversing
the skipping over every other position done by the convolution. We will be using a dilation

rate of 1 for the transposed convolution. Excellent visualizations of convolutions and transposed
convolutions have been developed by Dumoulin and Visin [2018] and can be found on their GitHub
page6.

1. Complete the model ConvTransposeNet, following the diagram in Figure 1b. Use the PyTorch
layers nn.Conv2d, nn.ReLU, nn.BatchNorm2d and nn.ConvTranspose2d. As before, your
CNN should be configurable by parameters kernel, dilation, num in channels, num filters,
and num colours. Use the following parameterizations (if not specified, assume default pa-
rameters):

• nn.Conv2d: The number of input and output filters, and the kernel size, should be set
in the same way as Part A. For the first two nn.Conv2d layers, set stride to 2 and set
padding to 1.

• nn.BatchNorm2d: The number of features should be specified in the same way as for
Part A.

• nn.ConvTranspose2d: The number of input filters should match the second dimension
of the input tensor. The number of output filters should match the second dimension of
the output tensor. Set kernel size to parameter kernel. Set stride to 2, set dilation
to 1, and set both padding and output padding to 1.

6https://github.com/vdumoulin/conv_arithmetic

5

https://github.com/vdumoulin/conv_arithmetic


CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

2. Train the model for at least 25 epochs using a batch size of 100 and a kernel size of 3. Plot
the training curve, and include this plot in your write-up.

3. How do the results compare to Part A? Does the ConvTransposeNet model result in lower
validation loss than the PoolUpsampleNet? Why may this be the case?

4. How would the padding parameter passed to the first two nn.Conv2d layers, and the padding
and output padding parameters passed to the nn.ConvTranspose2d layers, need to be mod-
ified if we were to use a kernel size of 4 or 5 (assuming we want to maintain the shapes of all
tensors shown in Figure 1b)?

Note: PyTorch documentation for nn.Conv2d7 and nn.ConvTranspose2d8 includes equations
that can be used to calculate the shape of the output tensors given the parameters.

5. Re-train a few more ConvTransposeNet models using different batch sizes (e.g., 32, 64, 128,
256, 512) with a fixed number of epochs. Describe the effect of batch sizes on the train-
ing/validation loss, and the final image output quality. You do not need to attach the final
output images.

Part C: Skip Connections (1 pts)

A skip connection in a neural network is a connection which skips one or more layer and connects
to a later layer. We will introduce skip connections to the model we implemented in Part B.

1. Add a skip connection from the first layer to the last, second layer to the second last, etc.
That is, the final convolution should have both the output of the previous layer and the
initial greyscale input as input (see Figure 1c). This type of skip-connection is introduced
by Ronneberger et al. [2015], and is called a “UNet”. Following the ConvTransposeNet class
that you have completed, complete the init and forward methods of the UNet class in
Part C of the notebook.

Hint: You will need to use the function torch.cat.

2. Train the model for at least 25 epochs using a batch size of 100 and a kernel size of 3. Plot
the training curve, and include this plot in your write-up.

3. How does the result compare to the previous model? Did skip connections improve the
validation loss and accuracy? Did the skip connections improve the output qualitatively?
How? Give at least two reasons why skip connections might improve the performance of our
CNN models.

7https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
8https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

6

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html


CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Object Detection

In the previous two parts, we worked on training models for image colourization. Now we will
switch gears and perform object detection by fine-tuning a pre-trained model.

Object detection is a task of detecting instances of semantic objects of a certain class in images.
Fine-tuning is often used when you only have limited labeled data.

For the following, you are not expected to read the referenced papers, though the writing is
very entertaining (by academic paper standards) and it may help provide additional context.

We use the YOLO (You Only Look Once) approach, as laid out in the the original paper by
Redmon et al. [2016]. YOLO uses a single neural network to predict bounding boxes (4 coordinates
describing the corners of the box bounding a particular object) and class probabilities (what object
is in the bounding box) based on a single pass over an image. It first divides the image into a grid,
and for each grid cell predicts bounding boxes, confidence for those boxes, and conditional class
probabilities.

Here, we take a pre-trained model, YOLOv3 [Redmon and Farhadi, 2018] and fine-tune it to
perform detection on the COCO dataset Lin et al. [2014].

Part D.1: Fine-tuning from pre-trained models for object detection (2 pts)

1. A common practice in computer vision tasks is to take a pre-trained model trained on a large
datset and finetune only parts of the model for a specific usecase. This can be helpful, for
example, for preventing overfitting if the dataset we fine-tune on is small.

To keep track of which weights we want to update, we use the PyTorch utility
Model.named parameters()9, which returns an iterator over all the weight matrices of the
model.

Complete the model parameter freezing part in train.py by adding 3-4 lines of code where
indicated. See also the notebook for further instruction.

Part D.2: Implement the classification loss (2 pts)

1. See the notebook for instructions for this part. You will fill in the BCEcls loss used for the
classification loss.

2. Visualize the predictions on 2 sample images by running the helper code provided.

9See examples at https://pytorch.org/docs/stable/nn.html

7

https://pytorch.org/docs/stable/nn.html


CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

What you have to submit

For reference, here is everything you need to hand in. See the top of this handout for submission
directions.

• A PDF file titled a2-writeup.pdf containing only the following:

– Answers to questions from Part A

∗ Q1 code for model PoolUpsampleNet (screenshot or text)

∗ Q2 visualizations and your commentary

∗ Q3 answer (6 values as function of NIC, NF, NC)

– Answers to questions from Part B

∗ Q1 code for model ConvTransposeNet (screenshot or text)

∗ Q2 answer: 1 plot figure (training/validation curves)

∗ Q3 answer

∗ Q4 answer

∗ Q5 answer

– Answers to questions from Part C

∗ Q1 code for model UNet (screenshot or text)

∗ Q2 answer: 1 plot figure (training/validation curves)

∗ Q3 answer

– Answers to questions from Part D.1

∗ Q1 code for freezing layers in train.py (screenshot or text; you may include only
the lines you added)

– Answers to questions from Part D.2

∗ Q1 code for classification loss in utils/loss.py (screenshot or text; you may include
only the lines you added)

∗ Q2 answer: visualization of predictions (screenshot or image files)

• Your code file a2-code.ipynb

References

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning, 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

8



CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 2

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788, 2016.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

9


