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Programming Assignment 4: DCGAN, GCN, and DQN

Version: 1.0
Version Release Date: 2022-03-26
Due Date: Thursday, April 8th, at 11:59pm

Submission: You must submit 4 files through MarkUs1: a PDF file containing your writeup,
titled a4-writeup.pdf, and your code files a4-dcgan.ipynb, a4-gcn.ipynb, a4-dqn.ipynb. Your
writeup must be typed.

The programming assignments are individual work. See the Course Information handout2 for de-
tailed policies.

You should attempt all questions for this assignment. Most of them can be answered at least par-
tially even if you were unable to finish earlier questions. If you think your computational results
are incorrect, please say so; that may help you get partial credit.

The teaching assistants for this assignment are Rex Ma and Emmy Fang. Send your email with
subject “[CSC413] PA4 ...” to csc413-2022-01-tas@cs.toronto.edu or post on Piazza with the tag
pa4.

1https://markus.teach.cs.toronto.edu/2022-01/courses/16
2https://uoft-csc413.github.io/2022/assets/misc/syllabus.pdf
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Introduction

In this assignment, you’ll get hands-on experience coding and training GANs, GCN (Graph Con-
volution Network) as well as DQN (Deep Q-learning Network), one of Reinforcement Learning
methods. This assignment is divided into three parts: in the first part, we will implement a specific
type of GAN designed to process images, called a Deep Convolutional GAN (DCGAN). We’ll train
the DCGAN to generate emojis from samples of random noise. In the second part, you will learn
how to implement the vanilla version of GCN and GAT. In the third part, we will implement and
train a DQN agent to learn how to play the CartPole balancing game. It will be fun to see your
model performs much better than you on the simple game :).

Part 1: Deep Convolutional GAN (DCGAN) [4pt]

For the first part of this assignment, we will implement a Deep Convolutional GAN (DCGAN).
A DCGAN is simply a GAN that uses a convolutional neural network as the discriminator, and
a network composed of transposed convolutions as the generator. To implement the DCGAN, we
need to specify three things: 1) the generator, 2) the discriminator, and 3) the training procedure.
We will go over each of these three components in the following subsections.

Open [DCGAN notebook link] on Colab and answer the following questions.

DCGAN

The discriminator in this DCGAN is a convolutional neural network that has the following archi-
tecture:

The DCDiscriminator class is implemented for you. We strongly recommend you to carefully
read the code, in particular the __init__ method. The three stages of the generator architec-
tures are implemented using conv and upconv functions respectively, all of which provided in
Helper Modules.
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Now, we will implement the generator of the DCGAN, which consists of a sequence of transpose
convolutional layers that progressively upsample the input noise sample to generate a fake image.
The generator has the following architecture:
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1. [1pt] Implementation: Implement this architecture by filling in the __init__ method of
the DCGenerator class, shown below. Note that the forward pass of DCGenerator is already
provided for you.

(Hint: You may find the provided DCDiscriminator useful.)

Note: The original DCGAN generator uses deconv function to expand the spatial dimension.
Odena et al. later found the deconv creates checker board artifacts in the generated samples.
In this assignment, we will use upconv that consists of an upsampling layer followed by conv2D
to replace the deconv module (analogous to the conv function used for the discriminator
above) in your generator implementation.

Training Loop

Next, you will implement the training loop for the DCGAN. A DCGAN is simply a GAN with a
specific type of generator and discriminator; thus, we train it in exactly the same way as a standard
GAN. The pseudo-code for the training procedure is shown below. The actual implementation is
simpler than it may seem from the pseudo-code: this will give you practice in translating math to
code.

Algorithm 1 Regular GAN Training Loop Pseudocode

1: procedure TrainGAN
2: Draw m training examples {x(1), . . . , x(m)} from the data distribution pdata
3: Draw m noise samples {z(1), . . . , z(m)} from the noise distribution pz
4: Generate fake images from the noise: G(z(i)) for i ∈ {1, . . . .m}
5: Compute the discriminator loss (negative log likelihood):

L(D) = − 1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G(z(i))

))]
6: Update the parameters of the discriminator
7: Draw m new noise samples {z(1), . . . , z(m)} from the noise distribution pz
8: Generate fake images from the noise: G(z(i)) for i ∈ {1, . . . .m}
9: Compute the generator loss (negative log likelihood):

L(G) = − 1

m

m∑
i=1

log
(
D(G(z(i)))

)
10: Update the parameters of the generator
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1. [1pt] Implementation: Fill in the gan_training_loop_regular function in the GAN sec-
tion of the notebook.

There are 5 numbered bullets in the code to fill in for the discriminator and 3 bullets for
the generator. Note that in the original GAN paper, we want to train the Generator by
minimizing log

(
1−D(G(z(i)))

)
in an effort to generate better fakes. However, this was shown

by Goodfellow to not provide sufficient gradients, especially early in the learning process. As
a fix, we instead wish to maximize log

(
D(G(z(i)))

)
, which is also refered as the non-saturating

GAN Loss.

Experiment

1. [1pt] We will train a DCGAN to generate Windows (or Apple) emojis in the Training - GAN
section of the notebook. By default, the script runs for 20000 iterations, and should take
approximately 20 minutes on Colab. The script saves the output of the generator for a fixed
noise sample every 200 iterations throughout training; this allows you to see how the generator
improves over time. How does the generator performance evolve over time? Include in
your write-up some representative samples (e.g. one early in the training, one
with satisfactory image quality, and one towards the end of training, and give
the iteration number for those samples. Briefly comment on the quality of the
samples.

2. [1pt] Multiple techniques can be used to stabilize GAN training. Least-squares GAN is one
of the many techniques [Mao et al., 2017]. Fill in the gan_training_loop_leastsquares

function in the GAN section of the notebook. Compared to the regular GAN training loop
you have implemented, you will only need to modify the discriminator loss and the generator
loss to the following:

L
(D)
ls =

1

2m

m∑
i=1

[(
D(x(i))− 1

)2
]
+

1

2m

m∑
i=1

[(
D(G(z(i)))

)2
]

(1)

L
(G)
ls =

1

m

m∑
i=1

[(
D(G(z(i)))− 1

)2
]

(2)

After the implementation, try turn on the least_squares_gan flag in the args_dict and
train the model again. Are you able to stabilize the training? Briefly explain in 1∼2 sentences
why the least squares GAN can help. You are welcome to check out the related blog posts
for LSGAN.
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Part 2: Graph Convolution Networks

For this part of the assignment, you will implement the vanilla version of Graph Convolution
Networks (GCN) Kipf and Welling [2016] and Graph Attention Networks (GAT) Veličković et al.
[2018].

Basics of GCN:

Recall from the lecture, the goal of a GCN is to learn a function of signals/features on a graph
G = (V,E), which takes as inputs:

1. the input features of each node, xi ∈ RF (in matrix form: X ∈ R|V |×F )

2. some information about the graph structure, typically the adjacency matrix A

Each convolutional layer can be written as H(l+1) = f(H(l), A), for some function f(). The f()
we are using for this assignment is in the form of f(H(l), A) = σ(D̂−1/2ÂD̂−1/2H(l)W (l)), where
Â = A + Identity and D̂ is diagonal node degree matrix (D̂−1Â normalizes Â such that all rows
sum to one). Let Ã = D̂−1/2ÂD̂−1/2. The GCN we will implement takes two convolution layers,
Z = f(X,A) = softmax(Ã ·Dropout(ReLU(ÃXW (0))) ·W (1))

Basics of GAT:

Graph Attention Network (GAT) is a novel convolution-style neural network. It operates on graph-
structured data and leverages masked self-attentional layers. In this assignment, we will implement
the graph attention layer.

Dataset:

The dataset we used for this assignment is Cora Sen et al. [2008]. Cora is one of standard citation
network benchmark dataset (just like MNIST dataset for computer vision tasks). It that consists
of 2708 scientific publications and 5429 links. Each publication is classified into one of 7 classes.
Each publication is described by a word vector (length 1433) that indicates the absence/presence
of the corresponding word. This is used as the features of each node for our experiment. The task
is to perform node classification (predict which class each node belongs to).

Experiments:

Open [GCN notebook link] on Colab and answer the following questions.

1. [1pt] Implementation of Graph Convolution Layer

Complete the code for GraphConvolution() Class

2. [1pt] Implementation of Graph Convolution Network

Complete the code for GCN() Class

3. [0.5pt] Train your Graph Convolution Network

After implementing the required classes, now you can train your GCN. You can play with the
hyperparameters in args.
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4. [2pt] Implementation of Graph Attention Layer

Complete the code for GraphAttentionLayer() Class

5. [0.5pt] Train your Graph Convolution Network

After implementing the required classes, now you can train your GAT. You can play with the
hyperparameters in args.

6. [0.5pt] Compare your models

Compare the evaluation results for Vanilla GCN and GAT. Comment on the discrepancy in
their performance (if any) and briefly explain why you think it’s the case (in 1-2 sentences).

Part 3: Deep Q-Learning Network (DQN) [4pt]

In this part of the assignment, we will apply Reinforcement Learning (DQN) to tackle the CartPole
Balancing game, the game that seems easy but actually quite hard. If you haven’t tried it yet, I
recommend you try it first [the link]. However, the difficult game for human may be very simple
to a computer.

Figure 1: Image of the CartPole Balancing game from OpenAI Gym.Brockman et al. [2016]

DQN Overview

Reinforcement learning defines an environment for the agent to perform certain actions (according
to the policy) that maximize the reward at every time stamp. Essentially, our aim is to train a
agent that tries to maximize the discounted, cumulative reward Rt0 =

∑∞
t=t0

γt−t0rt. Because we
assume there can be infinite time stamps, the discount factor, γ, is a constant between 0 and 1 that
ensures the sum converges. It makes rewards from the uncertain far future less important for our
agent than the ones in the near future.

The idea of Q-learning is that if we have a function Q∗(state, action) that outputs the maximum
expected cumulative reward achievable from a given state-action pair, we could easily construct a
policy (action selection rule) that maximizes the reward:

6

https://jeffjar.me/cartpole.html


CSC413/2516 Winter 2022 with Prof. Jimmy Ba and Bo Wang Programming Assignment 4

π∗(s) = argmax
a

Q∗(s, a) (3)

However, we don’t know everything about the world, so we don’t have access to Q∗. But,
since neural networks are universal function approximators, we can simply create one and train it
to resemble Q∗. For our training update rule, we will use a fact that every Q function for some
policies obeys the Bellman equation:

Qπ(s, a) = r + γQπ(s′, π(s′)) (4)

An intuitive explanation of the structure of the Bellman equation is as follows. Suppose that
the agent has received reward rt at the current state, then the maximum discounted reward from
this point onward is equal to the current reward plus the maximum expected discounted reward
γQ∗(st+1, at+1) from the next stage onward. The difference between the two sides of the equality
is known as the temporal difference error, δ:

δ = Q(s, a)− (r + γmax
a

Q(s′, a)) (5)

Our goal is the minimise this error, so that we can have a good Q function to estimate the
rewards given any state-action pair.

Experiments

Open the Colab notebook link to begin: [DQN notebook link]. Read through the notebook and
play around with it. More detailed instructions are given in the notebook. Have fun!

1. [1pt] Implementation of ϵ− greedy

Complete the function get action for the agent to select an action based on current state. We
want to balance exploitation and exploration through ϵ− greedy, which is explained in the
notebook. Include your code snippet in your write-up.

2. [1pt] Implementation of DQN training step

Complete the function train for the model to perform a single step of optimization. This is
basically to construct the the temporal difference error δ and perform a standard optimizer
update. Notice that there are two networks in the DQN network, policy net and target net,
think about how to use these two networks to construct the loss. Include your code snippet
in your write-up.

3. [2pt] Train your DQN Agent

After implementing the required functions, now you can train your DQN Agent, and you
are suggested to tune the hyperparameters listed in the notebook. Hyperparameters are
important to train a good agent. After all of these, now you can validate your model by
playing the CartPole Balance game! List the hyperparameters’ value you choose,
your epsilon decay rule and summarize your final results from the visualizations
in a few sentences in your write-up.
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What you need to submit

• Your code files: a4-dcgan.ipynb, a4-gcn.ipynb, a4-dqn.ipynb.

• A PDF document titled a4-writeup.pdf containing code screenshots, any experiment
results or visualizations, as well as your answers to the written questions.

Further Resources

For further reading on GANs, DCGAN, GCN and DQN, the following links may be useful:

1. Generative Adversarial Nets (Goodfellow et al., 2014)

2. Deconvolution and Checkerboard Artifacts (Odena et al., 2016)

3. Progressive Growing of GANs (Karras et al. [2017]

4. Analyzing and Improving the Image Quality of StyleGAN (Karras et al. [2020])

5. An Introduction to GANs in Tensorflow

6. Generative Models Blog Post from OpenAI

7. Playing Atari with Deep Reinforcement Learning (Mnih et al., 2013)

8. Deep Reinforcement Learning: A Brief Survey (Arulkumaran et al., 2017)
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