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Overview

In generative modeling, we’d like to train a network that models a
distribution, such as a distribution over images.

One way to judge the quality of the model is to sample from it.

This field has seen rapid progress:

2009 2015
2018
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Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)

Generative adversarial networks (this lecture)

Reversible architectures (this lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.
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Generator Networks

Autoregressive models explicitly predict a distribution at each step.

Another approach to generative modeling is to train a neural net to
produce approximate samples from the distribution.

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a differentiable function G mapping
z to an x in data space
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Generator Networks

A 1-dimensional example:
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Generator Networks

https://blog.openai.com/generative-models/
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Generator Networks

This sort of architecture sounded preposterous to many of us, but
amazingly, it works.
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Generative Adversarial Networks

Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’s parameters to make the sample a little better

The idea behind Generative Adversarial Networks (GANs): train two
different networks

The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image came
from the training set or the generator network

The generator network tries to fool the discriminator network
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Generative Adversarial Networks
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Generative Adversarial Networks

Let D denote the discriminator’s predicted probability of being data

Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JD = Ex∼D[− logD(x)] + Ez[− log(1− D(G (z)))]

One possible cost function for the generator: the opposite of the
discriminator’s

JG = −JD
= const + Ez[log(1− D(G (z)))]

This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

max
G

min
D
JD
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Generative Adversarial Networks

Updating the discriminator:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: GANs and Reversible Models 11 / 48



Generative Adversarial Networks

Updating the generator:
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Generative Adversarial Networks

Alternating training of the generator and discriminator:
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A Better Cost Function

We introduced the minimax cost function for the generator:

JG = Ez[log(1− D(G (z)))]

One problem with this is saturation.

Recall from our lecture on classification: when the prediction is really
wrong,

“Logistic + squared error” gets a weak gradient signal
“Logistic + cross-entropy” gets a strong gradient signal

Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’s cost is flat.
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A Better Cost Function

Original minimax cost:

JG = Ez[log(1− D(G (z)))]

Modified generator cost:

JG = Ez[− logD(G (z))]

This fixes the saturation problem.
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Generative Adversarial Networks

Since GANs were introduced in 2014, there have been hundreds of
papers introducing various architectures and training methods.

Most modern architectures are based on the Deep Convolutional GAN
(DC-GAN), where the generator and discriminator are both conv nets.

GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo

Good source of horrible puns (VEEGAN, Checkhov GAN, etc.)
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GAN Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation
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GAN Samples

Bedrooms:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation
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GAN Samples

ImageNet object categories (by BigGAN, a much larger model with a
bunch more engineering tricks):

Brock et al., 2019. Large scale GAN training for high fidelity natural image synthesis.
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GAN Samples

GANs revolutionized generative modeling by producing crisp,
high-resolution images.

The catch: we don’t know how well they’re modeling the distribution.

Can’t measure the log-likelihood they assign to held-out data.
Could they be memorizing training examples? (E.g., maybe they
sometimes produce photos of real celebrities?)
We have no way to tell if they are dropping important modes from the
distribution.
See Wu et al., “On the quantitative analysis of decoder-based
generative models” for partial answers to these questions.
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CycleGAN

Style transfer problem: change the style of an image while preserving the
content.

Data: Two unrelated collections of images, one for each style
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CycleGAN

If we had paired data (same content in both styles), this would be a
supervised learning problem. But this is hard to find.

The CycleGAN architecture learns to do it from unpaired data.

Train two different generator nets to go from style 1 to style 2, and
vice versa.
Make sure the generated samples of style 2 are indistinguishable from
real images by a discriminator net.
Make sure the generators are cycle-consistent: mapping from style 1 to
style 2 and back again should give you almost the original image.
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CycleGAN
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CycleGAN

Style transfer between aerial photos and maps:
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CycleGAN

Style transfer between road scenes and semantic segmentations (labels of
every pixel in an image by object category):
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Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)

Generative adversarial networks (this lecture)

Reversible architectures (this lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.
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Generator Networks

We have seen how to learn generator networks by training a
discriminator in GANs.

Problem:

Learning can be very unstable. Need to tune many hyperparameters.
No direct evaluation metric to assess the trained generator networks.

Idea: learn the generator directly via change of variables. (Calculus!)
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Change of Variables Formula

Let f denote a differentiable, bijective mapping from space Z to
space X . (I.e., it must be 1-to-1 and cover all of X .)

Since f defines a one-to-one correspondence between values z ∈ Z
and x ∈ X , we can think of it as a change-of-variables transformation.

Change-of-Variables Formula from probability theory: if x = f (z), then

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1

Intuition for the Jacobian term:
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Change of Variables Formula

Suppose we have a generator network which computes the function f .
It’s tempting to apply the change-of-variables formula in order to
compute the density pX (x).

I.e., compute z = f −1(x)

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1

Problems?

It needs to be differentiable, so that the Jaobian ∂x/∂z is defined.
The mapping f needs to be invertible, with an easy-to-compute inverse.
We need to be able to compute the (log) determinant.

Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.
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Reversible Blocks

Now let’s define a reversible block which is invertible and has a
tractable determinant.

Such blocks can be composed.

Inversion: f −1 = f −1
1 ◦ · · · ◦ f −1

k

Determinants:
∣∣∂xk
∂z

∣∣ =
∣∣ ∂xk
∂xk−1

∣∣ · · · ∣∣∂x2

∂x1

∣∣∣∣∂x1

∂z

∣∣
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Reversible Blocks

Recall the residual blocks:

y = x + F(x)

Reversible blocks are a variant of
residual blocks. Divide the units into
two groups, x1 and x2.

y1 = x1 + F(x2)

y2 = x2

Inverting a reversible block:

x2 = y2

x1 = y1 −F(x2)
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Reversible Blocks

Composition of two reversible blocks, but with x1 and x2 swapped:

Forward:

y1 = x1 + F(x2)

y2 = x2 + G(y1)

Backward:

x2 = y2 − G(y1)

x1 = y1 −F(x2)
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Volume Preservation

It remains to compute the log determinant of the Jacobian.

The Jacobian of the reversible block:

y1 = x1 + F(x2)

y2 = x2

∂y

∂x
=

(
I ∂F

∂x2

0 I

)
This is an upper triangular matrix. The determinant of an upper
triangular matrix is the product of the diagonal entries, or in this
case, 1.

Since the determinant is 1, the mapping is said to be volume
preserving.
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Nonlinear Independent Components Estimation

We’ve just defined the reversible block.

Easy to invert by subtracting rather than adding the residual function.
The determinant of the Jacobian is 1.

Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

We can compute the likelihood function using the change-of-variables
formula:

pX (x) = pZ (z)

∣∣∣∣det

(
∂x

∂z

)∣∣∣∣−1

= pZ (z)

We can train this model using maximum likelihood. I.e., given a
dataset {x(1), . . . , x(N)}, we maximize the likelihood

N∏
i=1

pX (x(i)) =
N∏
i=1

pZ (f −1(x(i)))
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Nonlinear Independent Components Estimation

Likelihood:
pX (x) = pZ (z) = pZ (f −1(x))

Remember, pZ is a simple, fixed distribution (e.g. independent
Gaussians)

Intuition: train the network such that f −1 maps each data point to a
high-density region of the code vector space Z.

Without constraints on f , it could map everything to 0, and this
likelihood objective would make no sense.
But it can’t do this because it’s volume preserving.
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Nonlinear Independent Components Estimation

Dinh et al., 2016. Density estimation using RealNVP.
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Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

Dinh et al., 2016. Density estimation using RealNVP.
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Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)

Generative adversarial networks (this lecture)

Reversible architectures (this lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.
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Autoencoders

An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.
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Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization

Compression (i.e. reducing the file size)

Note: this requires a VAE, not just an ordinary autoencoder.

Learn abstract features in an unsupervised way so you can apply them
to a supervised task

Unlabled data can be much more plentiful than labeled data

Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.
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Principal Component Analysis (optional)

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ‖x− x̃‖2

This network computes x̃ = UVx, which is a
linear function.

If K ≥ D, we can choose U and V such that
UV is the identity. This isn’t very interesting.
But suppose K < D:

V maps x to a K -dimensional space, so it’s doing dimensionality
reduction.
The output must lie in a K -dimensional subspace, namely the column
space of U.
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Principal Component Analysis (optional)

Review from CSC311: linear
autoencoders with squared error
loss are equivalent to Principal
Component Analysis (PCA).

Two equivalent formulations:

Find the subspace that
minimizes the reconstruction
error.
Find the subspace that
maximizes the projected
variance.

The optimal subspace is
spanned by the dominant
eigenvectors of the empirical
covariance matrix.

“Eigenfaces”
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Deep Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

This manifold is the image of the decoder.

This is a kind of nonlinear dimensionality reduction.
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Deep Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)
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Deep Autoencoders

Some limitations of autoencoders

They’re not generative models, so they don’t define a distribution
How to choose the latent dimension?
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Trade-offs of Generative Approaches

So far, we have seen four different approaches:

Autoregressive models (Lectures 3, 7, and 8)
Generative adversarial networks (this lecture)
Reversible architectures (this lecture)
Variational autoencoders (next lecture)

They all have their own pro and con. We often pick a method based
on our application needs.

Some considerations for computer vision applications:

Do we need to evaluate log likelihood of new data?
Do we prefer good samples over evaluation metric?
How imporant is representation learning, i.e. meaningful code vectors?
How much computational resource can we spent?
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Trade-offs of Generative Approaches

In summary:

Log-likelihood Sample Representation Computation

Autoregressive
GANs

Reversible
VAEs

To be continued...
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Trade-offs of Generative Approaches

In summary:

Log-likelihood Sample Representation Computation

Autoregressive Tractable Good Poor O(#pixels)
GANs Intractable Good Good O(#layers)

Reversible Tractable Poor Poor O(#layers)
VAEs

To be continued...
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