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Logistics

Some administrative stuff:
@ HW4 (most ‘mathy’) is out! (Due on April 1st, not a joke!)
@ PA4 (most interesting) will be out on March 26th, due on April 8t

@ Project comments will be finished by March 23.
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Overview

Quiz: Which face image is fake?
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Overview

Four modern approaches to generative modeling:
@ Autoregressive models (Lectures 3, 7, and 8)
@ Generative adversarial networks (last lecture)
@ Reversible architectures (last lecture)

@ Variational autoencoders (this lecture)

All four approaches have different pros and cons.
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

reconstruction 784 units
A
100 units decoder
A
code vector 20 units
A
100 units encoder
A
input 784 units
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Autoencoders

Why autoencoders?

@ Map high-dimensional data to two dimensions for visualization
@ Compression (i.e. reducing the file size)
@ Note: this requires a VAE, not just an ordinary autoencoder.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

o Unlabled data can be much more plentiful than labeled data

@ Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.
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Deep Autoencoders

@ Deep nonlinear autoencoders learn to project the data onto
a low-dimensional nonlinear manifold.

@ This manifold is the image of the decoder.

@ This is a kind of nonlinear dimensionality reduction.

2 units
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Deep Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given

dimensionality, compared with linear autoencoders (PCA)

D /&3 4 5673 8 Q
D /7 & 3 4 s 7F 8 Q
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Deep Autoencoders

@ Some limitations of autoencoders

e They're not generative models, so they don't define a distribution
e How to choose the latent dimension?
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Variational Auto-encoder (VAE)

zi~q(zi|xi, )
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Decoder learns the generative process
given the sampled latent vectors.

Sampling process in the middle.

Encoder learns the distribution of latent
space given the observations.

Generative Model
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Observation Model

Source: https://iagtm.pressbooks.com/chapter/story-platos-allegory-of-the-cave/
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Observation Model

e Consider training a generator network with maximum likelihood.

p(x) = / p(2)p(x | 2) dz

@ One problem: if z is low-dimensional and the decoder is deterministic,
then p(x) = 0 almost everywhere!

e The model only generates samples over a low-dimensional sub-manifold
of X.
@ Solution: define a noisy observation
model, e.g.

p(x|z) = N(x; Go(2), 1),

where Gy is the function computed by
the decoder with parameters 6.
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Observation Model

o At least p(x) = [ p(z)p(x|z) dz is well-defined, but how can we

compute it?
@ Integration, according to XKCD:
DIFFERENTIATION INTEGRATION

TRY APPLYING

INTEGRATION
BY PARTS SUBSTITUTION




N
Observation Model

o At least p(x) = [ p(z)p(x|z) dz is well-defined, but how can we
compute it?
o The decoder function Gg(z) is very complicated, so there's no hope of
finding a closed form.

@ Instead, we will try to maximize a lower bound on log p(x).
e The math is essentially the same as in the EM algorithm from CSC411.
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Variational Inference

@ We obtain the lower bound using
Jensen’s Inequality: for a convex
function h of a random variable X,

E[h(X)] = h(E[X])

Therefore, if his concave (i.e. —his = . }
convex), .

E[h(X)] < h(E[X])

log 2z
@ The function log z is concave.

Therefore,

E[log X] < log E[X]
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Variational Inference

@ Suppose we have some distribution g(z). (We'll see later where this
comes from.)

@ We use Jensen's Inequality to obtain the lower bound.
log p(x) = log / p(z) p(x|z) dz
~ log / a(2) 22 plxia)

) E[log X] < log E[X]
q(z) log [q i) p x\z)] dz (Jensen’s Inequality)

[log 28] + o og pixi)

e We'll look at these two terms in turn.
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Variational Inference

@ The first term we'll look at is Eq [log p(x|z)]

@ Since we assumed a Gaussian observation model,

log p(x|z) = log N'(x; Go(2),nl)

—tog | o0 (5 k- G )|

1
= —2—n||x — Go(2)]|? + const

@ So this term is the expected squared error in reconstructing x from z.
We call it the reconstruction term.
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Variational Inference

/-\

p(z)

el

e This is just —Dkr.(q(z)||p(z)), where Dxr, is the Kullback-Leibler
(KL) divergence

@ The second term is [E, [

\_/

it (a(2)|p(2)) £ Eq Jlog 4|

e KL divergence is a widely used measure of distance between probability
distributions, though it doesn’t satisfy the axioms to be a distance
metric.

o More details in tutorial.

e Typically, p(z) = N(0,1). Hence, the KL term encourages g to be
close to AV/(0,1).
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Variational Inference

@ Hence, we're trying to maximize the variational lower bound, or
variational free energy:

log p(x) = F(6, q) = Eq [log p(x|z)] — Dxw(ql[p)-

@ The term “variational” is a historical accident: “variational inference”
used to be done using variational calculus, but this isn't how we train
VAEs.

e We'd like to choose g to make the bound as tight as possible.

It's possible to show that the gap is given by:

Heads-up: You will show the full calculation in HW4.

log p(x) — F(8, q) = Dkr(q(z) p(z]x)).

Therefore, we'd like g to be as close as possible to the posterior
distribution p(z|x).
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@ Let's think about the role of each of the two terms.

@ [ he reconstruction term

1
Eq[log p(x[2)] = —5—5Eqlllx — Go(2)]*] + const

is minimized when g is a point mass on

z, = argmin ||x — Gy(2)||°.
z

@ But a point mass would have infinite KL divergence. (Exercise: check
this.) So the KL term forces g to be more spread out.
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Reparameterization Trick

e To fit g, let’s assign it a parametric form, in particular a Gaussian
distribution: q(z) = N(z; u, X), where g = (1, ..., k) and
¥ = diag(c?,...,0%).

@ In general, it's hard to differentiate through an expectation. But for
Gaussian g, we can apply the reparameterization trick:

Zj = Wi + Oj€j,

where ¢; ~ N(0, 1).
@ Hence,
Wi =z gi = Zj€j.

@ This is exactly analogous to how we derived the backprop rules for
dropout
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Reparameterization Trick

Original form

|_ _________________ 1
| |
| f i
I |
| |
| ~q@ex)
| |
: N X :
| |
I |

|

: Deterministic node

. : Random node
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Reparameterization Trick

Original form Reparameterised form
S o ]
| f | . Backprop f |
: NN :
: ~q@ex) 2/0s 2, =9®xe) |
| Y4 |
| & & 1 9f/0g B X ~ple) |
: .| =0L/dg :

! | |

[Kingma, 2013]

[Bengio, 2013]

[Kingma and Welling 2014]
[Rezende et al 2014]
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Amortization

@ ldea: amortize the cost of inference by
learning an inference network which

predicts (u, X) as a function of x. - z

@ The outputs of the inference net are u € / \
and logo. (The log representation pl  logd gzl
ensures o > 0.) X/

e If o = 0, then this network essentially
computes z deterministically, by way of
.

e But the KL term encourages o > 0,
so in general z will be noisy.

@ The notation g(z|x) emphasizes that ¢ X
depends on x, even though it's not
actually a conditional distribution.
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Amortization

@ Combining this with the decoder
network, we see the structure closely
resembles an ordinary autoencoder. The
inference net is like an encoder.

@ Hence, this architecture is known as a
variational autoencoder (VAE).

@ The parameters of both the encoder
and decoder networks are updated using
a single pass of ordinary backprop.

@ The reconstruction term corresponds
to squared error ||x — %/, like in an
ordinary VAE.

o The KL term regularizes the
representation by encouraging z to be
more stochastic.
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Variational Auto-encoder (VAE)

neural network
decoder

neural network

encoder

loss = ||x-X]|]> + KL ,N(O, )]

” 'd( )“2 + KI—[ IN(OI I)]

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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VAE - Summary

Reparam. trick
for differentiability

®

Computed
@ analytically

By, 0, = M(x),3(x) Push x through encoder
e~ N(0,1) Sample noise
zZ=€0, + U, Reparameterize
x, = po(x | 2) Push z through decoder
recon. loss = MSE(x, x,) Compute reconstruction loss

var. loss = —KL[N (p,,0,)|IN(0,I)] Compute variational loss

L = recon. loss + var. loss Combine losses

om/blog/2018/04/29/reparameterization/
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VAEs vs. Other Generative Models

@ In short, a VAE is like an autoencoder, except that it's also a
generative model (defines a distribution p(x)).

@ Unlike autoregressive models, generation only requires one forward
pass.

@ Unlike reversible models, we can fit a low-dimensional latent
representation. We'll see we can do interesting things with this...
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Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

LR B BAD %
£+ LY ¥ P O

B A% KA XN -

Ha and Eck, “A neural representation of sketch drawings”

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model



Latent Space Interpolations

@ You can often get interesting results by interpolating between two
vectors in the latent space:

-0 - - ——— e — — — — =]

add
smiling
vector

&

subtract
' : . smiling
- _ < vector
add
sunglass
vector

add
sunglass
vector

subtract
sunglass
vector

https://arxiv.org/pdf/1610.00291.pdf
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Latent Space Interpolations

Select a feature brush & strength and enjoy painting:

draw [remove

undo reset
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Latent Space Interpolations

@ Latent space interpolation of music:
https://magenta.tensorflow.org/music-vae
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Trade-offs of Generative Approaches

@ So far, we have seen four different approaches:
o Autoregressive models (Lectures 3, 7, and 8)
o Generative adversarial networks (last lecture)
o Reversible architectures (this lecture)
o Variational autoencoders (optional)

@ They all have their own pro and con. We often pick a method based
on our application needs.
@ Some considerations for computer vision applications:

Do we need to evaluate log likelihood of new data?

Do we prefer good samples over evaluation metric?

How imporant is representation learning, i.e. meaningful code vectors?
How much computational resource can we spent?
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Trade-offs of Generative Approaches

@ In summary:

Log-likelihood | Sample | Representation | Computation
Autoregressive Tractable Good Poor O(#pixels)
GANs Intractable Good Good O(#layers)
Reversible Tractable Poor Poor O(#layers)
VAEs (optional) | Tractable* Poor Good O(#layers)

@ There is no silver bullet in generative modeling.
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After the break

After the break: Graph Neural Networks (GNN)
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The missing piece

® Tabular data : Linear Models, MLP

® Sequence data (e.g., Language, speech): CNN, RNN,
Transformer

® Imaging data : CNN, Vision Transformer

® What about graph data?
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What is a graph?

A graph is composed of
B * Nodes (also called vertices)
» Edges connecting a pair of nodes

presented in an adjacency matrix

(< Je0)

1 1

200

QOO0

Source: Minji Yoon, CMU
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.
What is a graph?

A graph is composed of
* Nodes (also called vertices)
« Edges connecting a pair of nodes

x, Presentedin an adjacency matrix

Nodes can have feature vectors

QOO

Source: Minji Yoon, CMU
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Graph is everywhere!

‘.."2,, £

Jimmy Ba and Bo Wang
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Graph Neural Networks (GNN) is everywhere

ICLR 2021 Submission Top 50 Keywords

deep learning

reinforcement learnin
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Npj | computational materials

Explore content v About the journal v Publish with us v

nature > npj computational materials > articles > article

Article | Open Access | Published: 03 June 2021

Benchmarking graph neural networks for materials

chemistry

Victor Fung &, Jiaxin Zhang, Eric Juarez & Bobby G. Sumpter

npj Computational Materials 7, Article number: 84 (2021) | Cite this article

7807 Accesses | 7 Citations | 41 Altmetric | Metrics

nature

Explore content v About the journal v  Publish with us v

View all journals

Search Q

Login ®
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What is GNN? — Problem Setup

» Given
Xp « Agraph
B  Node attributes
X; Xp * (part of nodes are labeled)
* Find
* Node embeddings

X, X, * Predict

 Labels for the remaining nodes

undirected unweighted graph

Source: Minji Yoon, CMU
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What is GNN? — Problem Setup

Target Node XB

| Nek ok

Xa

Xp X,

“Homophily: connected nodes are
related/informative/similar”

Source: Minji Yoon, CMU
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What is GNN? — Problem Setup

Xp Xz

“Homophily: connected nodes are
related/informative/similar”

Source: Minji Yoon, CMU

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model



N
What is GNN? — Problem Setup

“Homophily: connected nodes are
related/informative/similar”

Source: Minji Yoon, CMU
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What is GNN? — Problem Setup

Source: Minji Yoon, CMU
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What is GNN? — Problem Setup

Friend
recommendation

Product
recommendation

Fraud detection

Churn prediction

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

Target Node X

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

Target Node Xz

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

1. Aggregate messages from neighbors ,9 hg)
h,(,l): node embedding of v at [-th layer e g

N (v) : neighboring nodes of v h(l+1)
f(’): aggregation function at [-th layer a

- ——— hg)
b ~

O A

md = O (hd, {hP:u € ¥ (@)}) ?

= fO (hgl),hg)hg)hg)) Neighbors of node A
N(A) ={B,C,D}

m,(,l) : message vector of v at [-th layer

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

1. Aggregate messages from neighbors
mQ = fO (B, {nP:u € N @)})
= 10 (1, APHOR)

2. Transform messages
g®: transformation function at [-th layer
h§l+1) — g(l) (m‘gl))

Source: Minji Yoon, CMU

Jimmy Ba and Bo Wang CSC413/2516 Lecture 10:

0O nY

(I+1) “
hA QM‘- o hg)
-

0w

Neighbors of node A
N(A) ={B,C,D}

Generative Model



What is GNN? — Forward propagation

In each layer [, D
for each target node v :
h®

1. Aggregate messages A v h(cl)
m,(,l) =fO (hl(,l), {hg):u € N(v)}) :' -~

2. Transform messages (;)Q‘
RD = O n®) h;
2nd Jayer 1st layer

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

Graph Convolutional Networkst!!! v

hr® «~---49 X
B
1. Aggregate messages e - «0’ FARY
o__ 1 ® 4 <" R = '
=, Y M MR C o 0 [ o
u €N w)u{v} . N ~~_GX
2. Transform messages S hR E
hy™D = (WO om) hcp* @x;
D
O
2nd Jayer 1st layer ot layer

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph
convolutional networks."

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

Graph Isomorphism Networks!?! hgl)

oy

1. Aggregate messages h® T
m® = Z h® °<—M<.___C. -
u € N(w)u} ~

~
~

2. Transform messages N
hg"’l) = o'(W(l) ° (l)) hg;l)Q‘
2nd Jayer 1st layer

[2] Xu, Keyulu, et al. "How powerful are graph neural networks?."

Source: Minji Yoon, CMU
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What is GNN? — Forward propagation

Simplified GCNI2I v
hr® «~---49 X
B
1. Aggregate messages @ / «0’ FARY
m(l) _ 1 Z hg) hA ” hgl) /// —‘e XB
v TN + 1 -l --
ueNw)uf{v} T~~~
2. Transform messages S .. 0 x:
D) _ @ o gy ® ~ 0‘ N
D
S
O x
[3] Wu, Felix, et al. "Simplifying graph convolutional networks." 2nd Iayer 1 st Iayer oth Iayer

Source: Minji Yoon, CMU

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model



What is GNN? — Forward propagation

In each layer [ :

Aggregate over neighbors
(l 1) _ f(l)(h(l 1) {h(l 1), ‘U € N(U)})

lIlIt

Core part of GNNs
Transform messages

h(l) _.g(l)(m(l 1))

.Ill.

1-layer MLP is
commonly used

Source: Minji Yoon, CMU
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Graph Convolutional Network (GCN)

« GCNLII

» Average embeddings of neighboring nodes

o _ 1

®
my’ = s hy,
|N(v) +1 uenN@w)u{v}

+

h1(71+1) — G(W(l) o m,(,l))

z 1 -1
hy =o(W® o (e Zue N@)uw) )

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."
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Graph Convolutional Network (GCN)

« GCNI1I [ Can we use batch-mode? ]

! 1 -1
hP = o(W® o (e Zue ¥w)uw) he)

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."
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Graph Convolutional Network (GCN)

« GCNLII

A 1 -1
hP = o(W® o (e Zue ¥w)uw) he)

-—————

Shared
parameters

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."
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Graph Convolutional Network (GCN)

« GCNLII

! 1 1-1
hy) = o(W® o (V1) Zu e N@U@) hy )

----------------

HU = (A + DHEOWO)

. als &

(row-normalized) Adjacency matrix

Node embedding matrix

Shared
parameters

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."
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Graph Convolutional Network (GCN)

« GCNLII

= A\
B=3
[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model




.
Graph Convolutional Network (GCN)

O H T
h()_ G(I:'./.(.l.).:. J\r(v)+1|ZuEN(v)U{v}h ))9

H(l): _ O_C(A + I)Hcr_T)-w(t)j ----------------------

ks ok &

(row-normalized) Adjacency matrix

Node embedding matrix

Assume A is the affinity matrix

Let D be diagonal matrix where v
Doy =Deg®) <INl 5T T
The inverse of D: D~ 1 is also diagonal: e SRS

Dyy = 1/IN(W)|
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Graph Convolutional Network (GCN)

—_— N

A+I=(D+1)_1*(A+I)—’;4v = l)_1 x A

A graph is composed of
* Nodes (also called vertices)
» Edges connecting a pair of nodes

presented in an adjacency matrix

A
B
1
L=T— (D) 1% (A) g 1| |11

Normalized Graph Laplacian e 1 1)1
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Graph Convolutional Network (GCN) -- Summary

Image Credit: Defferrard et al. NIPS 2016
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Graph Convolutional Network (GCN) -- Summary

Hidden layer

o ,.//‘ ReLU

ReLU (AXW@))

Image Credit: Defferrard et al. NIPS 2016
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Graph Convolutional Network (GCN) -- Summary

Hidden layer Hidden layer
—_—
o o
-/. i °/. !
\ ® o \ e ©
° °
e 9 Y
L ] L ]
/o /s
° ~ ReLU *—& RelLU

A ReLU (AXW“’)) W“)f

Image Credit: Defferrard et al. NIPS 2016
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Graph Attention Network (optional)

« GATI'4
+ Different weights to different nodes in a neighborhood
* Multi-head attention

exp (LeakyReLU (57’ [Wh; Hwﬁj}))

concat/avg
hi

Q5 =

 Seen, P (LeakyReLU (a7 (W[ W)

[14] Petar Velickovic., et al. "GRAPH ATTENTION NETWORKS."
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How to Train GNN?

« Semi-supervised learning

* Input node features are given for all nodes in a graph
* Only a subset of nodes have labels

min £(y, f (,))
y: node label

L could be L2 if y is real number, or cross entropy
if y is categorical

Node embedding z,, is a function of input graph
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How to Train GNN?

Unsupervised setting:
No node label available
Use the graph structure as the supervision!

“Similar” nodes have similar embeddings
L= Z CE(yy, DEC(zy, z,,))

ZyiZy

Where y,, , = 1 when node u and v are similar
CE is the cross entropy
DEC is the decoder such as inner product

Still an active research topic!
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Two interesting questions about GNN

Question 1: Width?
O

,/
Target Node T
B J G‘ Q
- T G
Q. 0
Should we aggregate
all neighbors? ‘o

/l\\

/

s

Source: Minji Yoon, CMU

Jimmy Ba and Bo Wang
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Two interesting questions about GNN

Question 2: Depth?

Target Node e

How many hops Il
should we explore? *o

49

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 1: Width?

* If we aggregate all neighbors, GNNs have scalability issues

* Neighbor explosion

« In L -layer GNNs, one node aggregates information from 0(K%)
nodes where K is the average number of neighbors per node

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 1: Width?

* If we aggregate all neighbors, GNNs have scalability issues

* Neighbor explosion
* Hub nodes who are connected to a huge number of nodes

Cristiano Ronaldo

Cristiano Ronaldo is currently the most-followed individual on Facebook, with over
150 million followers.

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 1: Width?

* Limit the neighborhood expansion by sampling

a fixed number of neighbors
/l\

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 1: Width?

* Random sampling
» Assign same sampling probabilities to all neighbors
» GraphSagel¥l

 Importance sampling

* Assign different sampling probabilities to all neighbors
* FastGCNP), LADIES'®l, AS-GCN"l, GCN-BS8l, PASS®

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 2: Depth?

* Informative neighbors could be indirectly connected with a
target node

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 2: Depth?

« 2-layer or 3-layer GNNs are commonly used in real worlds

Wasn'’t it Deeeep Learning?

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 2: Depth?

» When we increase the depth L more than this, GNNs face
neighbor explosion 0(K1) o
« Over-smoothing

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 2: Depth?

Over-smoothing(1°l
* When GNNs become deep, ® ®
nodes share many neighbors 0 _—

* Node embeddings become indistinguishable

® O
dh &b
O 6 6 0 o
dh b &b & &
[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”

Source: Minji Yoon, CMU
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Two interesting questions about GNN

Question 2: Depth?

Over-smoothing!'0
* Node embeddings of Zachary’s karate club network with GNNs

030 . . o os & i o .,A.'-
° ‘o @ 025 - [ = 04 =
00 oo o 02 . ... o . o % :.. o o
. . .o. 0 .,
[ 4 ° o i, °
o . . # 000 °
. N
(a) 1-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) 5-layer

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”

Source: Minji Yoon, CMU
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GNN Applications

Pinterest Engineering
Aug 15,2018 - 8 minread

DeepMind > sos >  Tatfic prediction with advanced Graph Neural Networks

@

Traffic prediction with

8L0G POST
RESEARCH

PinSage: A new graph convolutional neural
network for web-scale recommender systems

Ruining He | Pinterest engineer, Pinterest Labs

Web image search gets better with graph neural

advanced Graph Neural networks
N ) N . " to image search uses images returned by traditional search
Networks amazon ‘ science Eles in a graph neural network through which similarity signals are

Food Discovery with Uber Eats:
Using Graph Learning to Power

1ieving improved ranking in cross-modal retrieval.

ral Network

PUBLICATION

ERLABS Europe  yaven (SISO

Recommendations P-Companion: A principled
e s e framewaork for diversified
o (I ’g. comp{ememtafy product
a® ) recommendation
Q a2 _
e‘ Y =~ '// - iéi;mhmq Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, Wei Wang
FO D g
g o Q

Source: Minji Yoon, CMU
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GNN applications

« Graph-level prediction: whether the molecule is a potent drug(?®!
» Execute on a large dataset of known candidate molecules
* Select the ~ top-100 candidates from the GNN model
» Have chemists thoroughly investigate those

H
N |
Y—) GNN |}——| @
o B
HO

Molecule Inhibits E.coli?

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”

Source: Minji Yoon, CMU
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GNN applications

» Discover a previously overlooked compound that is a highly
potent antibiotic2°]

H,N—_S\__S
s
MW

Halicin

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”
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GNN applications

nature

col

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract Authors NEWS . 20 FEBRUARY 2020
iy | Koo s naos, POWErful antibiotics discovered using Al

Regina Barzilay, James J. Collins
Machine learning spots molecules that work even against ‘untreatable’ strains of
bacteria.

L Correspondence
regina@csail.mit.edu (R.B.),
jimjc@mit.edu (J.J.C.)

H FINANCIAL TIMES

News Sport Reel Worklife Travel Future
| COMPANIES TECH MARKETS GRAPHICS OPINION WORK & CAREERS LIFE & ARTS HOW TO SPEND IT

CORONAVIRUS BUSINESS UPDATE
Get 30 days’ complimentary access to our Coronavirus Business
Update newsletter

Home Video World UK Business Tech Science Stories  Entertainment & Arts

intelligence

Our new guide
for getting ahead

EIE[E WORKLIFE
obotics Anti-social robots hari

increase social distanc

“Death of the office’ homeworking
claims exaggerated

Artificial intelligence

Scientists discover powerful antibiotic

using Al

© 21 February 2020

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”

Al discovers antibiotics to treat drug-resistant
<snae diseases

Machine learning uncovers potent new drug able to kill 35 powerful bacteria
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After the break

After the break: Reinforcement Learning: Policy Gradient
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Alpha-Go Trailer --- This is it, folks!
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Overview

@ Most of this course was about supervised learning, plus a little
unsupervised learning.

@ Reinforcement learning:

e Middle ground between supervised and unsupervised learning
@ An agent acts in an environment and receives a reward signal.

@ Next lecture: combine policies and Q-learning

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model



Overview
Machine
Learning
O O O
Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes

Source: https://perfectial.com/blog/reinforcement-learning-applications/
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Overview

How does Al take over the world? Three Steps!

SUPERVISED UNSUPERVISED REINFORCEMENT
LEARNING LEARNING LEARNING

[

TP
%
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Reinforcement learning

Tl

O

&B) ©
@ An agent interacts with an environment (e.g. game of Breakout)

@ In each time step t,
o the agent receives observations (e.g. pixels) which give it information
about the state s; (e.g. positions of the ball and paddle)
o the agent picks an action a; (e.g. keystrokes) which affects the state
@ The agent periodically receives a reward r(s;,a;), which depends on
the state and action (e.g. points)
@ The agent wants to learn a policy mg(a;: | st)
e Distribution over actions depending on the current state and
parameters 6
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Reinforcement learning

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

//////////////////////////////

Source: Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Reinforcement learning

Robot Locomotion

o/
{E

-

Maybe it knows
something we don't!

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Source: Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford

Jimmy Ba and Bo Wang (CSC413/2516 Lecture 10: Generative Model



Reinforcement learning

Go
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Objective: Win the game!
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State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise
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Source: Fei-Fei Li, Justin Johnson, Serena Yeung, cs231n Stanford
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Markov Decision Processes

@ The environment is represented as a Markov decision process M.

@ Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

@ Components of an MDP:

initial state distribution p(sp)

policy mg(a¢ | s¢)
transition distribution p(s¢y1|se,ar)
reward function r(s;,a;)

¢ ¢ o ¢

@ Assume a fully observable environment, i.e. s; can be observed directly
e Rollout, or trajectory 7 = (sg,ag,S1,a1,...,S7,aT)
@ Probability of a rollout

p(7) = p(so) me(ao | so) p(s1 [s0,a0) - - - p(s7|sT-1,a7-1) To(at |ST)
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Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

@ State: positions, angles, and velocities of the joints

@ Actions: apply forces to the joints

@ Reward: distance from starting point

@ Policy: output of an ordinary MLP, using the state as input

@ More environments: https://gym.openai.com/envs/#mujoco
R e A CSC413/2516 Lecture 10:  Generative Model



Markov Decision Processes

@ Return for a rollout: r(7) = Etho r(st,az)
o Note: we're considering a finite horizon T, or number of time steps;
we'll consider the infinite horizon case later.
o Goal: maximize the expected return, R = E,)[r(7)]

@ The expectation is over both the environment’'s dynamics and the
policy, but we only have control over the policy.
@ The stochastic policy is important, since it makes R a continuous
function of the policy parameters.
e Reward functions are often discontinuous, as are the dynamics
(e.g. collisions)

3 A
return expected
return U
0 0
deterministic policies stochastic policies
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