
CSC413 Tutorial:
Optimization

for Machine Learning

Shervin Mehryar1

January 25, 2022

1Based on tutorials/slides by Harris Chan, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang & others

“How to train your neural network”Neural Network

Overview

● Review: Overall Training Loop
● Initialization
● Optimization

○ Gradient Descent
○ Momentum, Nesterov Accelerated Momentum
○ Learning Rate Schedulers: Adagrad, RMSProp, Adam

● Hyperparameter tuning: learning rate, batch size, regularization
● Jupyter/Colab Demo in PyTorch

Neural Network Training Loop

1.
2.

3.

3.

1.

Initialization of Parameters
Initial parameters of the neural network can affect the gradients and learning

Idea 1: Constant initialization

● Result: For fully connected layers: identical gradients, identical
neurons. Bad!

Idea 2: Random weights, to break symmetry

● Too large of initialization: exploding gradients
● Too small of initialization: vanishing gradients

Interactive Demo: Initialization

Source: Initializing neural networks. https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

2. Kaiming He Init: ReLU activation

Initialization: Calibrate the variance

1: Glorot & Bengio: Understanding the difficulty of training deep feedforward neural networks
2: He et al.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Two popular initialization schemes:

1: Xavier Init: For Tanh activation

or

of neurons in layer
l −1

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi
https://arxiv.org/pdf/1502.01852.pdf

Initialization: Xavier Initialization Intuition
For networks with Tanh activation functions, Xavier Init aim for the
following behaviour of the activations:

1. Variance of activation ~ constant across every layer

2. Mean of the activation and weights = zero

Initialization: Xavier Initialization Proof
For networks with Tanh activation functions, and fully connected layers:

Express variance of activations in layer l as function of variance of weights:

In linear region for

Assume product terms
are independent, bring
summation outside

Activations

Layer

Initialization: Xavier Initialization Proof
Assuming that the weights and activations are independent at init, apply identity:

Assume mean
of weights = 0

Assume mean
of inputs = 0

Weights are iid
Inputs are iid

Note: Not true
for ReLU

Interactive Demo: Initialization Schemes

Source: Initializing neural networks. https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Batch Normalization Layer

Ioffe & Szegedy: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Can we compensate for bad initializations
in some other way?

BatchNorm’s Idea:

● Explicitly normalize the activations of
each layer to be unit Gaussian.

● Apply immediately after fully
connected/conv layers and before
non-linearities

● Learn an additional scale and shift
and running statistics for test time

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization Layer

Ioffe & Szegedy: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

● BatchNorm significantly speeds
up training in practice (Fig 1a)

● Distribution after connected layer
is much more stable with BN,
reducing the “internal covariate
shift”, i.e. the change in the
distribution of network activations
due to the change in network
parameters during training

https://arxiv.org/pdf/1502.03167.pdf

Neural Network Training Loop

1.
2.

3.

3.

2.

Optimization
● Optimization: (informal) Minimize (or maximize) some quantity.
● Applications:

○ Engineering: Minimize fuel consumption of an automobile
○ Economics: Maximize returns on an investment
○ Supply Chain Logistics: Minimize time taken to fulfill an order
○ Life: Maximize happiness

Optimization: Formal definition
● Given a training set:

● Prediction function:

● Define a loss function:

● Find the parameters:

which minimizes the empirical risk :

Optimization: Formal definition
● Empirical risk :

● The optimum satisfies:

● Where

● Sometimes the equation has closed-form solution (e.g. linear regression)

Optimization: Batch Gradient Descent
Batch Gradient Descent:

● Initialize the parameters randomly

● For each iteration, do until convergence:

Learning rate (a small step)

Gradient Descent
Geometric interpretation:
● Gradient is perpendicular to the tangent of the level

set curve
● Given the current point, negative gradient direction

decreases the function fastest
Alternative interpretation:
● Minimizing the first-order taylor approx of keep

the new point close to the current point

Source: Wikipedia

Stochastic Gradient Descent
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Randomly select a training sample (or
a small subset of the training samples)

○ Conduct gradient descent:

● Intuition: A noisy approximation
of the gradient of the whole
dataset

● Pro: each update requires a small
amount of training data, good for
training algorithms for a
large-scale dataset

● Tips
○ Subsample without replacement so that you visit each point on each pass through the

dataset ("epoch")
○ Divide the log-likelihood estimate by the size of mini-batches, making learning rate

invariant to the mini-batch size.

Gradient Descent with Momentum
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Update the momentum

○ Conduct gradient descent:

● Pro: “accelerate” learning by accumulating some “velocity/momentum” using
the past gradients

Nesterov Accelerated Gradient
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Update the momentum

○ Conduct gradient descent:

● Pro: Look into the future to see how much momentum is required

Nesterov Accelerated Gradient

● First make a big jump in the direction of the previous accumulated gradient
● Then measure the gradient where you end up and make a correction

Standard
Momentum

Jump

Correction

Learning Rate Schedulers
What if we want to be able to have a per-parameter learning rate?

● Certain parameter may be more sensitive (i.e. have higher curvature)

Learning Rate Schedulers: Adagrad
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Intuition: It increases the learning rate for more sparse features and decreases
the learning rate for less sparse ones, according to the history of the gradient

Learning Rate Schedulers: RMSprop/Adadelta
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Intuition: Unlike Adagrad, the denominator places a significant weight on the
most recent gradient. This also helps avoid decreasing learning rate too much.

Learning Rate Schedulers: Adam
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Bias-corrected forms of
 ,

Paper Link

https://arxiv.org/pdf/1412.6980.pdf

Optimizers Comparison (excluding Adam)

Source: Sebastian Ruder, https://ruder.io/optimizing-gradient-descent/, Image: Alec Radford

SGD optimization on loss surface contours
SGD optimization on loss surface contours

https://ruder.io/optimizing-gradient-descent/
https://twitter.com/alecrad

Interactive Demo: Optimizers

Source: Parameter optimization in neural networks: https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/optimization/

Neural Network Training Loop

1.
2.

3.

3.

3..

Learning Rate
Ideal Learning Rate should be:

● Should not be too big (objective will blow up)
● Should not be too small (takes longer to

converge)

Convergence criteria:

● Change in objective function is close to zero
● Gradient norm is close to zero
● Validation error starts to increase

(early-stopping)
Idealized cartoon depiction of
different learning rates.

Image Credit: Andrej Karpathy

Learning Rate: Decay Schedule
Anneal (decay) learning rate over time so the parameters can settle into a local
minimum. Typical decay strategies:

1. Step Decay: reduce by factor every few epochs (e.g. a half every 5 epochs,
or by 0.1 every 20 epochs), or when validation error stops improving

2. Exponential Decay: Set learning rate according to the equation

3. 1/t decay:

Iteration
number

Hyperparam

Neural Network Training Loop

1.
2.

3.

3.3..

Batch Size
Batch Size: the number of training data points for computing the empirical risk at
each iteration.

● Typical small batches are powers of 2: 32, 64, 128, 256, 512,
● Large batches are in the thousands

Large Batch Size has:

● Fewer frequency of updates
● More accurate gradient
● More parallelization efficiency / accelerates wallclock training
● May hurt generalization, perhaps by causing the algorithm to find poorer

local optima/plateau.

Batch Size
Related papers on batch size:

● Goyal et al., Accurate, large minibatch SGD
○ Proposes to increase the learning rate by of the minibatch size

● Hoffer et al., Train longer generalize better
○ Proposes to increase the learning rate by square root of the minibatch size

● Smith et al., Don't decay the learning rate, increase the batch size
○ Increasing batch size reduce noise, while maintaining same step size

https://arxiv.org/pdf/1706.02677.pdf
https://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf
https://arxiv.org/pdf/1711.00489.pdf

Hyperparameter Tuning
Several approaches for tuning multiple hyperparameters together:

Image source: Random Search for Hyper-Parameter Optimization

Prefer
random
search over
grid search,
higher
chance of
finding better
performing
hyper param

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Hyperparameter Tuning
Search hyperparameter on log scale:

● learning_rate = 10 ** uniform(-6, 1)
○ Learning rate and regularization strength have multiplicative effects on the training dynamics

● Start from coarse ranges then narrow down, or expand range if near the
boundary of range

One validation fold vs cross-validation:

● Simplifies code base to just use one (sizeable) validation set vs doing cross
validation

Jupyter/Colab Demo in PyTorch

See Colab notebook

References
● Notes and tutorials from other courses:

○ ECE521 (Winter 2017) tutorial on Training neural network
○ Stanford's CS231n notes on Stochastic Gradient Descent, Setting up data and loss, and

Training neural networks
○ Deeplearning.ai's interactive notes on Initialization and Parameter optimization in neural

networks
○ Jimmy Ba's Talk for Optimization in Deep Learning at Deep Learning Summer School 2019

● Academic/white papers:
○ SGD tips and tricks from Leon Bottou
○ Efficient BackProp from Yann LeCun
○ Practical Recommendations for Gradient-Based Training of Deep Architectures from Yoshua

Bengio

https://ece521.github.io/
http://www.psi.toronto.edu/~jimmy/ece521/Tut2.pdf
https://cs231n.github.io/
https://cs231n.github.io/optimization-1/
https://cs231n.github.io/neural-networks-2/
https://cs231n.github.io/neural-networks-3/
https://www.deeplearning.ai/
https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.youtube.com/watch?v=eHEkbDHVDuI
https://dlrlsummerschool.ca/
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/?from=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F192769%2Ftricks-2012.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/pdf/1206.5533v2.pdf

