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Purpose

What will you learn from doing the final project?

» (Gain experience working on some original research

* Check your understanding of concepts from the course

e |dentify important issues with the field and think about how to fix them
* (Gain experience writing results in a paper style format

* Clearly express where the field was before your paper

» Clearly express how your project has contributed to pushing the field
forward
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Resources

Much of this tutorial is inspired by the following resources:

o https://billf.mit.edu/sites/default/files/documents/cvprPapers.pdf

e http://www.ai.mit.edu/courses/6.899/papers/ted.htm

o http://approximatelycorrect.com/2018/01/29/heuristics-technical-scientific-
writing-machine-learning-perspective/
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Organization

Typical Sections

* |Introduction
* Related Work
 Method
 Experiments
* Conclusion

e Future Work / Limitations



Organization

From Ted Adelson

o Start by stating which problem you are addressing, keeping the audience in
mind. They must care about it, which means that sometimes you must tell them
why they should care about the problem.

* Then state briefly what the other solutions are to the problem, and why they
aren't satisfactory. If they were satisfactory, you wouldn’t need to do the
work.

 Then explain your own solution, compare it with other solutions, and say why it’s
better.

e At the end, talk about related work where similar techniques and experiments
have been used, but applied to a different problem.

http://www.ai.mit.edu/courses/6.899/papers/ted.htm



http://www.ai.mit.edu/courses/6.899/papers/ted.htm

Tip:
Explicitly write out the research question you are trying to answer

so that you have a central goal. As you are writing your paper,
ensure that you are always addressing the question.

e.g. Let’s say you want to classify images of animals taken in the wild. You might ask
something like:

Does incorporating geographic features into an image classifier improve species classification?

This may seem trivial, but it can come in handy when trying to determine null hypothesis vs
what you are interested in measuring. [Also useful in presentations to communicate a clear goal
with your audience]
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Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Objective:
Jun-Yan Zhu* Taesung Park” Phillip Isola Alexei A. Efros
Berkeley Al Research (BAIR) laboratory, UC Berkeley

Help the reader
understand the
problem and why
It IS Important.

Monet <_ Photos Zebras _ Horses Summer Z_ Winter

horse —7 zebra

Figure gives visual
examples of what “image
translation” means

Photograph Monet Van Gogh Ukiyo-e

Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection

of paintings of famous artists, our method learns to render natural photographs into the respective styles.
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Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.
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to the figure.
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1. Introduction

What did Claude Monet see as he placed his easel by the
bank of the Seine near Argenteuil on a lovely spring day
in 1873 (Figure 1, top-left)? A color photograph, had it
been invented, may have documented a crisp blue sky and
a glassy river reflecting it. Monet conveyed his impression
of this same scene through wispy brush strokes and a bright
palette.

What if Monet had happened upon the little harbor in
Cassis on a cool summer evening (Figure 1, bottom-left)?
A brief stroll through a gallery of Monet paintings makes it
possible to imagine how he would have rendered the scene:
perhaps in pastel shades, with abrupt dabs of paint, and a
somewhat flattened dynamic range.

We can imagine all this despite never having seen a side
by side example of a Monet painting next to a photo of the
scene he painted. Instead, we have knowledge of the set of
Monet paintings and of the set of landscape photographs.
We can reason about the stylistic differences between these

two sets, and thereby imagine what a scene might look like
if we were to “translate” it from one set into the other.
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translation” explicitly
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“Other solutions to the
problem are

unsatisfactory” (and why)

Paired

Unpaired

L

Figure 2: Paired training data (left) consists of training ex-
amples {z;, y; fil, where the correspondence between z;
and y; exists [22]. We instead consider unpaired training
data (right), consisting of a source set {z; £V=1 (z; € X)
and a target set {y; } 31, (y; € Y), with no information pro-
vided as to which z; matches which y;.

two sets, and thereby imagine what a scene might look like
if we were to “translate” it from one set into the other.

In this paper, we present a method that can learn to do the
same: capturing special characteristics of one image col-
lection and figuring out how these characteristics could be
translated into the other image collection, all in the absence
of any paired training examples.

This problem can be more broadly described as image-
to-image translation [22], converting an image from one
representation of a given scene, x, to another, y, e.g.,
grayscale to color, image to semantic labels, edge-map to
photograph. Years of research in computer vision, image
processing, computational photography, and graphics have
produced powerful translation systems in the supervised

setting, where example image pairs {z;,y;};., are avail-
able (Figure 2, left), e.g., [11, 19, 22, 23, 28, 33, 45, 56, 58,
62]. However, obtaining paired training data can be difficult
and expensive. For example, only a couple of datasets ex-
ist for tasks like semantic segmentation (e.g., [4]), and they
are relatively small. Obtaining input-output pairs for graph-
ics tasks like artistic stylization can be even more difficult
since the desired output is highly complex, typically requir-
ing artistic authoring. For many tasks, like object transfigu-
ration (e.g., zebra<>horse, Figure 1 top-middle), the desired
output is not even well-defined.

We therefore seek an algorithm that can learn to trans-
late between domains without paired input-output examples
(Figure 2, right). We assume there is some underlying rela-
tionship between the domains — for example, that they are
two different renderings of the same underlying scene — and
seek to learn that relationship. Although we lack supervi-
sion in the form of paired examples, we can exploit super-
vision at the level of sets: we are given one set of images in
domain X and a different set in domain Y. We may train
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a mapping G : X — Y such that the output § = G(z),
x € X, 1s indistinguishable from images y € Y by an ad-
versary trained to classify ¢ apart from y. In theory, this ob-
jective can induce an output distribution over ¢ that matches
the empirical distribution pg,:,(y) (in general, this requires
(G to be stochastic) [16]. The optimal GG thereby translates
the domain X to a domain Y distributed identically to Y.
However, such a translation does not guarantee that an in-
dividual input  and output y are paired up in a meaningful
way — there are infinitely many mappings G that will in-
duce the same distribution over y. Moreover, in practice,
we have found it difficult to optimize the adversarial objec-
tive in isolation: standard procedures often lead to the well-
known problem of mode collapse, where all input images
map to the same output image and the optimization fails to
make progress [15].

These i1ssues call for adding more structure to our ob-
jective. Therefore, we exploit the property that translation
should be “cycle consistent”, in the sense that if we trans-
late, e.g., a sentence from English to French, and then trans-
late it back from French to English, we should arrive back
at the original sentence [3]. Mathematically, if we have a
translator G : X — Y and another translator ' : ¥ — X,
then G and F should be inverses of each other, and both
mappings should be bijections. We apply this structural as-
sumption by training both the mapping G and F' simultane-
ously, and adding a cycle consistency loss [64] that encour-
ages F'(G(z)) ~ z and G(F(y)) = y. Combining this loss
with adversarial losses on domains X and Y yields our full
objective for unpaired image-to-image translation.

We apply our method to a wide range of applications,
including collection style transfer, object transfiguration,
season transfer and photo enhancement. We also compare
against previous approaches that rely either on hand-defined
factorizations of style and content, or on shared embed-
ding functions, and show that our method outperforms these
baselines. We provide both PyTorch and Torch implemen-
tations. Check out more results at our website.
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LLARGE SCALE GAN TRAINING FOR
HiGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock* Jeff Donahue’ Karen Simonyan'

Heriot-Watt University DeepMind DeepMind

ajb5@hw.ac.uk jeffdonahuel@google.com simonyan@google.com
ABSTRACT

Despite recent progress in generative image modeling, successfully generating
high-resolution, diverse samples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by reducing the variance of the Generator’s input. Our
modifications lead to models which set the new state of the art in class-conditional
image synthesis. When trained on ImageNet at 128 x 128 resolution, our models
(BigGANSs) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Dis-
tance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

Figure 1: Class-conditional samples generated by our model.
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The state of generative image modeling has advanced dramatically in recent years, with Generative
Adversarial Networks (GANs, Goodfellow et al. (2014)) at the forefront of efforts to generate high-
fidelity, diverse images with models learned directly from data. GAN training is dynamic, and
sensitive to nearly every aspect of its setup (from optimization parameters to model architecture),
but a torrent of research has yielded empirical and theoretical insights enabling stable training in
a variety of settings. Despite this progress, the current state of the art in conditional ImageNet
modeling (Zhang et al., 2018) achieves an Inception Score (Salimans et al., 2016) of 52.5, compared
to 233 for real data.

In this work, we set out to close the gap in fidelity and variety between images generated by GANs
and real-world images from the ImageNet dataset. We make the following three contributions to-
wards this goal:

e We demonstrate that GANs benefit dramatically from scaling, and train models with two
to four times as many parameters and eight times the batch size compared to prior art. We
introduce two simple, general architectural changes that improve scalability, and modify a
regularization scheme to improve conditioning, demonstrably boosting performance.

“Work done at DeepMind
"Equal contribution

Published as a conference paper at ICLR 2019

e As a side effect of our modifications, our models become amenable to the “truncation
trick,” a simple sampling technique that allows explicit, fine-grained control of the trade-
off between sample variety and fidelity.

e We discover instabilities specific to large scale GANSs, and characterize them empirically.
Leveraging insights from this analysis, we demonstrate that a combination of novel and
existing techniques can reduce these instabilities, but complete training stability can only
be achieved at a dramatic cost to performance.

Our modifications substantially improve class-conditional GANs. When trained on ImageNet at
128 x 128 resolution, our models (BigGANSs) improve the state-of-the-art Inception Score (IS) and
Fréchet Inception Distance (FID) from 52.52 and 18.65 to 166.5 and 7.4 respectively. We also
successfully train BigGANs on ImageNet at 256256 and 512512 resolution, and achieve IS and
FID of 232.5 and 8.1 at 256256 and IS and FID of 241.5 and 11.5 at 512x512. Finally, we train
our models on an even larger dataset — JFT-300M — and demonstrate that our design choices transfer
well from ImageNet. Code and weights for our pretrained generators are publicly available .




Introduction

Summary

o State the problem and context. Why is this problem important?

 Why are other solutions unsatisfactory? What is your solution? What are the
implications of your solution?

 What is new in your paper?

 Bullet points for the main contributions can be really helpful for the
reader!

* | would probably write this section after Methods + Results, since your
Introduction should be centred around context needed to understand your
results
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Related Work

Motivation

 Know your audience!
* Does the reader have a background in the subject of the paper?

 No? Then this is a good place to provide some references to important
prior works, explain the history of solutions to the problem, and place your
paper’s contributions in context.

* Yes? The reader will commonly wonder how the method differs from an
already published prior method. This is a good place to show that you
understand the subject and have read the relevant works.

https://beehive.cs.princeton.edu/wiki/writing/how-to-write-a-related-work-section/



https://beehive.cs.princeton.edu/wiki/writing/how-to-write-a-related-work-section/

Related Work

Tips

* Think about key components a reader should know before reading your
paper.
* [here should be a common theme to each paragraph in this section.

 Be extremely generous In including related work. Be intellectually honest.

https://beehive.cs.princeton.edu/wiki/writing/how-to-write-a-related-work-section/
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e The authors
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they are aware of a
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images cannot be distinguished from images in the target
domain.

Image-to-Image Translation The idea of image-to-
image translation goes back at least to Hertzmann et al.’s
Image Analogies [1Y], who employ a non-parametric tex-
ture model [ 1 0] on a single input-output training image pair.
More recent approaches use a dataset of input-output exam-
ples to learn a parametric translation function using CNNs
(e.g., [33]). Our approach builds on the “pix2pix” frame-
work of Isola et al. [22], which uses a conditional generative
adversarial network [16] to learn a mapping from input to
output images. Similar ideas have been applied to various
tasks such as generating photographs from sketches [44] or
from attribute and semantic layouts [25]. However, unlike
the above prior work, we learn the mapping without paired
training examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is
to relate two data domains: X and Y. Rosales et al. [42]
propose a Bayesian framework that includes a prior based
on a patch-based Markov random field computed from a
source image and a likelihood term obtained from multiple
style images. More recently, CoOGAN [32] and cross-modal
scene networks [ 1] use a weight-sharing strategy to learn a
common representation across domains. Concurrent to our
method, Liu et al. [31] extends the above framework with
a combination of variational autoencoders [2/] and genera-
tive adversarial networks [16]. Another line of concurrent
work [46, 49, 7] encourages the input and output to share
specific “content” features even though they may differ in
“style®”. These methods also use adversarial networks, with
additional terms to enforce the output to be close to the input
in a predefined metric space, such as class label space [2],
image pixel space [46], and image feature space [47].

Unlike the above approaches, our formulation does not
rely on any task-specific, predefined similarity function be-

tween the input and output, nor do we assume that the input
and output have to lie in the same low-dimensional embed-
ding space. This makes our method a general-purpose solu-
tion for many vision and graphics tasks. We directly com-
pare against several prior and contemporary approaches in
Section 5.1.

Cycle Consistency The idea of using transitivity as a
way to regularize structured data has a long history. In
visual tracking, enforcing simple forward-backward con-
sistency has been a standard trick for decades [24, 4Z].
In the language domain, verifying and improving transla-
tions via “back translation and reconciliation” is a technique
used by human translators [3] (including, humorously, by
Mark Twain [51]), as well as by machines [17]. More
recently, higher-order cycle consistency has been used in
structure from motion [61], 3D shape matching [21], co-
segmentation [55], dense semantic alignment [65, 64], and
depth estimation [14]. Of these, Zhou et al. [64] and Go-
dard et al. [14] are most similar to our work, as they use a
cycle consistency loss as a way of using transitivity to su-
pervise CNN training. In this work, we are introducing a
similar loss to push GG and F' to be consistent with each
other. Concurrent with our work, in these same proceed-
ings, Yi et al. [59] independently use a similar objective
for unpaired image-to-image translation, inspired by dual
learning in machine translation [17].

Neural Style Transfer [13, 23, 52, 17] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with
the style of another image (typically a painting) based on
matching the Gram matrix statistics of pre-trained deep fea-
tures. Our primary focus, on the other hand, is learning
the mapping between two image collections, rather than be-
tween two specific images, by trying to capture correspon-
dences between higher-level appearance structures. There-
fore, our method can be applied to other tasks, such as
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Method

Motivation

* Present the main (hon-experimental) results.

 Show in detail what the method is and why it is (theoretically) justified.



Method

Tips

* |Include an algorithm box, equations describing your model, theorems or formally
stated conjectures.

e Often nice to include an image of the model architecture or algorithm pipeline

* This section is fairly easy to write in my experience.

* | would probably do this section first.

 Describe what you did and why! Ideally you should already have a good idea of
what to write here by the time it’s time to write the report.

e You can also write this section as you are performing experiments to ensure you
don’t forget anything you did (make sure to keep a log of some sort)
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loss In detall.

3. Formulation

Our goal is to learn mapping functions between two
domains X and Y given training samples {z;} , where
z; € X and {y, jj‘il where y; € Y!. We denote the data
distribution as £ ~ pgata(z) and ¥ ~ pgata(y). As illus-
trated in Figure 3 (a), our model includes two mappings
G: X -Yand F : Y — X. In addition, we in-
troduce two adversarial discriminators D x and Dy, where
D aims to distinguish between images {z} and translated
images {F'(y)}; in the same way, Dy aims to discriminate
between {y} and {G(z)}. Our objective contains two types
of terms: adversarial losses [16] for matching the distribu-
tion of generated images to the data distribution in the target
domain; and cycle consistency losses to prevent the learned
mappings GG and F' from contradicting each other.

3.1. Adversarial Loss

We apply adversarial losses [16] to both mapping func-
tions. For the mapping function G : X — Y and its dis-
criminator Dy, we express the objective as:

EGAN(Ga DYa X) Y) = Ey"’Pdau(y) [lOg DY(y)]

+ ]E:rfvpdm(:r) [log(l - DY (G(IE))],
(1)

where G tries to generate images G(x) that look similar to
images from domain Y, while Dy aims to distinguish be-
tween translated samples G(z) and real samples y. G aims
to minimize this objective against an adversary D that tries
to maximize it, i.e., ming maxp, Lcan(G, Dy, X,Y).
We introduce a similar adversarial loss for the mapping
function F' : Y — X and its discriminator Dx as well:
i.e., minp maxp . ﬁGAN(F, Dx, Y, X)

3.2. Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G
and F' that produce outputs identically distributed as target
domains Y and X respectively (strictly speaking, this re-
quires G and F' to be stochastic functions) [15]. However,
with large enough capacity, a network can map the same
set of input images to any random permutation of images in
the target domain, where any of the learned mappings can
induce an output distribution that matches the target dis-
tribution. Thus, adversarial losses alone cannot guarantee
that the learned function can map an individual input z; to
a desired output y;. To further reduce the space of possi-
ble mapping functions, we argue that the learned mapping

'We often omit the subscript 7 and j for simplicity.

i' : N .pu“:‘ 5 ‘ ™~ L-l ¥ ‘u,l‘L. ‘.‘Ni a3 N 11"1 e

- . RUITTIYS ‘;‘-h WLIITTYY

Hitdaes,

Figure 4: The input images x, output images G(x) and the
reconstructed images F'(G(z)) from various experiments.
From top to bottom: photo<+Cezanne, horses<>zebras,
winter—summer Yosemite, aerial photos<+Google maps.

functions should be cycle-consistent: as shown in Figure 3
(b), for each image = from domain X, the image translation
cycle should be able to bring x back to the original image,
ie., z — G(z) - F(G(z)) =~ x. We call this forward cy-
cle consistency. Similarly, as illustrated in Figure 3 (c), for
each image y from domain Y, G and F' should also satisfy
backward cycle consistency: y — F(y) — G(F(y)) =~ y.
We incentivize this behavior using a cycle consistency loss:

Leye(G, F) = Eppy (o) 1 F(G(2)) — 2||1]
+ Eypi ) IGF W) —ylll].

In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F'(G(z))
and z, and between G(F'(y)) and y, but did not observe
improved performance.

The behavior induced by the cycle consistency loss can
be observed in Figure 4: the reconstructed images F'(G(z))
end up matching closely to the input images .

3.3. Full Objective
Our full objective is:
E(Ga Fa DXa -DY) ZLGAN(G> DY, X, Y)

+ LGAN(FaDX)}/aX)
£ ALoyo(G, F), G
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2.2 Contrastive Predictive Coding

Figure 1 shows the architecture of Contrastive Predictive Coding models. First, a non-linear encoder
Jenc maps the input sequence of observations z; to a sequence of latent representations z; = Genc(Z¢),
potentially with a lower temporal resolution. Next, an autoregressive model g, summarizes all z-; in
the latent space and produces a context latent representation ¢; = g, (2<¢). -

As argued in the previous section we do not predict future observations x; . . directly with a generative
model px (z¢41|ct). Instead we model a density ratio which preserves the mutual information between
T¢+k and c; (Equation 1) as follows (see next sub-section for further details):

P(Ziyklce)
P(Tesr)
where o< stands for *proportional to’ (i.e. up to a multiplicative constant). Note that the density ratio

f can be unnormalized (does not have to integrate to 1). Although any positive real score can be used
here, we use a simple log-bilinear model.:

fr(@iqr, ) 2)

Fi(@s ik c0) = exp (2 Wiet), 3)

In our experiments a linear transformation W,;F c; 1s used for the prediction with a different W, for
every step k. Alternatively, non-linear networks or recurrent neural networks could be used.

By using a density ratio f(z;y,c:) and inferring z;4 . with an encoder, we relieve the model from
modeling the high dimensional distribution z;, . Although we cannot evaluate p(x) or p(x|c) directly,
we can use samples from these distributions, allowing us to use techniques such as Noise-Contrastive
Estimation [12, 14, 15] and Importance Sampling [16] that are based on comparing the target value
with randomly sampled negative values.

In the proposed model, either of z; and c¢; could be used as representation for downstream tasks.
The autoregressive model output ¢; can be used if extra context from the past is useful. One such
example is speech recognition, where the receptive field of z; might not contain enough information
to capture phonetic content. In other cases, where no additional context is required, z; might instead
be better. If the downstream task requires one representation for the whole sequence, as in e.g. image
classification, one can pool the representations from either z; or c; over all locations.

Finally, note that any type of encoder and autoregressive model can be used in the proposed framework.
For simplicity we opted for standard architectures such as strided convolutional layers with resnet
blocks for the encoder, and GRUs [17] for the autoregresssive model. More recent advancements
in autoregressive modeling such as masked convolutional architectures [18, 19] or self-attention
networks [20] could help improve results further.

2.3 InfoNCE Loss and Mutual Information Estimation

Both the encoder and autoregressive model are trained to jointly optimize a loss based on NCE, which
we will call InfoNCE. Given a set X = {z1,...zn} of N random samples containing one positive
sample from p(z;4x|c:) and N — 1 negative samples from the ’proposal’ distribution p(z¢41), we
optimize:

Ln=-E

log (4)

fr(Tisr, ct)
EszX fk(wja Ct)
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Implementation/Experiments
Reproducibility

* Your report should provide enough information to reproduce results.
* Architecture, loss, optimizer details, hyperparameters (and how you found those hyperparameters)
 What tricks were useful to make your approach work??
 What were the most important parameters to tune?
« How much compute was used?
* This section does not need to be extremely long

 Sometimes people include this section at the end of their paper if implementation is not central to
their study

* | would write this section together with Methods
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Results/Discussion

e« Some papers combine Results + Discussion into one section, others leave it
as two sections

* |t is usually good to have an analysis of the results right after you present; if
you leave it to a separate section, the reader may forget

 Then, you can leave the discussion for overall thoughts and limitations

* | would write these sections after Methods and Experiments



Results
Tips

* Determine your baselines (null hypothesis): you will be comparing the

performance of your algorithm with a prior approach.

* Describe the implementation of the prior approach. Did you use existing
code or reimplement it yourself?

* You should probably make sure these papers are mentioned in the
iIntroduction



Results

Metrics
* Describe the metrics you are using to define success.

 What metrics make sense given your context?

* |s your data imbalanced? Accuracy value (# correct / total) may be uninformative
* How bad are false positives, false negatives?

e Some useful metrics to think about: AUROC, AUPRC, F-score, macro/micro
accuracy, KL divergence, loss

 Can you get a confidence bound or a p-value*?

» *Different subfields have different trends for reporting error estimates and
significance. Take a look at what previous papers did.

* As a starting point, look at what metrics previous works used



Discussion
Tips

« Usually you will want to convince the reader that your approach is useful in the real world.
o State hypotheses and motivation for each experiment.
* Think about whether you have clear evidence to verify or nullify the hypothesis.
 Don’t cherry pick results!
* Including negative results is fine, especially for this project report.
* |If you have negative results, would be good to write about why you think it turned out that way
* Write about limitations of your work.
 If you weren’t able to run all the experiments you planned to, why not?
* \Was anything holding you back? E.g. compute, time
* Are there underlying problems with your dataset, model that you couldn’t fix?

 Mention some future work (experiments to extend your work)
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Abstract/Conclusion
Tips

e | usually write these last

* First, | read through my paper and make sure everything follows a cohesive
narrative

e |f it doesn’t follow a cohesive narrative, | take this time to edit

e | construct a list of the main points a reader needs to know about the paper
and | turn it into abstract

 Remember, an abstract is a selling point of your work: you want to spend
some time on it to make sure it is well-written



How to Read a Paper



How to Read a Paper

 Most people will look at:
e abstract

 first paragraph of the intro to understand what problem the paper is trying
to solve

» |last paragraph (bullet points) of the intro for contributions of the paper

* Interesting figures and their captions

Inspired by: https://twitter.com/hardmaru/status/1305758751798910976



https://twitter.com/hardmaru/status/1305758751798910976

Figures

* A reader should be able to understand your paper without looking at any
figures

» Key detalls in the paper should not be hidden within figures
* A reader should be able to understand your paper only looking at the figures

* Figures stand out and readers should be able to get a general idea about the
paper just from looking at them.

 \WWhen writing captions, keep in mind that some people may not have read
the text that refers to the figure. Include enough details to explain the main
idea of the figure.
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References
Tips

* Use dblp.org instead of arxiv to get bibtex entries.

* Cite generously

 Make sure to cite sources wherever you use them (not just the first time; not
just in the related works section)

* |f in doubt, cite (better to over-cite than under-cite!)

* Use \citet{} for a textual citation, \citep{} for parenthetical.

While forward dynamics models map a state and action to the next state, an inverse dynamics model
maps two subsequent states to an action. Inverse dynamics models have been used in various ways
in sequential decision making. In exploration, inverse dynamics serves as a way to learn represen-
tations of the controllable aspects of the state (Pathak et al., 2017). In imitation learning, inverse
dynamics models can be used to map a sequence of states to the actions needed to imitate the trajec-
tory (Pavse et al., 2019). Christiano et al. (2016) use inverse dynamics models to translate actions
taken in a simulated environment to the real world.


http://dblp.org

How to get a good score



Rubric

e Quality [35%] (do good technical work)
o Clarity [25%] (follow the writing guidelines in this tutorial)
* Originality [20%] (is what you are doing novel?)

o Significance [5%] (are the results important? important can mean many
things!)

o Participation [15%] (write reviews of other students’ projects)



Reviewing



How to Write a Review
From the ICLR 2021 Reviewer Guide

 Read the paper carefully, considering the following:
 What is the goal of the paper?
* What did the authors do well?
 What are the weaknesses of the paper?

 Keep in mind that even if a paper isn’t interesting to you, it may be
Interesting to others.



How to Write a Review
From the ICLR 2021 Reviewer Guide

 Answer these key questions:
 What is specifically being tackled by the paper?
* |s the approach well motivated?

* Does the paper support the claims it makes?



How to Write a Review
From the ICLR 2021 Reviewer Guide

* [o write the review:
« Summarize what the paper contributes.
» List strong and weak points.
» State the score you are giving the paper.
* Provide support for your score.

* Write what would be needed to improve the score.



Summary



Summary

How to write a good course project report

 Write a good intro, clearly introducing the problem, why it is important and
unsolved, and the contributions of your paper.

* Cite generously.

* Clearly state hypotheses and whether the evidence verifies or nullifies them.



Good Luck!



