
Natural Language
Processing and
Transformers 🤖

March 8th, 2022
University of Toronto
Tutorial 8 CSC413/2516

The Big Picture

● Natural language (& speech) are central to human intelligence

● Natural Language Processing (NLP) attempts to capture some of this

intelligence algorithmically and is of huge practical importance

○ machine translation, chatbots, automatic fact checking, …

● NLP has seen several transformative shifts in the last few years

● Build basic NLP literacy by looking at language models

● Get up to date with recent developments

○ BERT, GPT, Self-Supervised Learning (SSL)

● Know where to look if you’re starting an NLP project

● Will focus more on building intuition than math

Goals of this Tutorial

Language
Models

Language models (LMs) assign probabilities to sequences of words

● Speech recognition: P(I will be back soonish) > P(I will be bassoon dish)

● Spell checkers: P(There are two midterms) > P(Their are two midterms)

● Machine translation:

他 向 记者 介绍了 主要 内容

P(He to reporters introduced main content) <

P(He briefed reporters on the main contents of the statement) <

Language Models

Anatomy of a Language Model

The probability of a
sequence of n words

Is the product of the conditional probability
of each word and its history (chain rule)

In practice, we take the log sum
How do we compute the
conditional probability?

● We can use recurrent neural networks (RNNs)! E.g. LSTMS, GRUs

● Work well for variable length inputs, like sentences

Language Models

Recurrent neural networks have some shortcomings:

● Not parallelizable within training examples

● Difficult to optimize due to vanishing gradients

● Difficulty modelling long range dependencies

Language Models

We’d like an architectural primitive that:

● Is parallelizable within training examples

○ Take advantage of accelerators like GPUs/TPUs

● Directly facilities interactions between tokens

○ To better model long range dependencies

● Attention to the rescue?

Language Models

Attention

Self-attention

Cross-attention

Attention

https://jalammar.github.io/illustrated-transformer/
https://distill.pub/2016/augmented-rnns/

● Many flavours of attention have been proposed

● We will focus on the most common, (scaled) dot-product attention

● Scaled dot-product attention is the backbone of transformers

● Like any attention mechanism, we need to make two decisions:

○ How to compute similarity? → dot-product

○ How do we normalize the similarity score? → softmax

Attention

Scaled Dot-Product Attention

Scaled dot-product attention
takes three matrices as input

Similarity is simply the dot
product between Q and K

A softmax normalizes
similarities → [0, 1]

The output is simply
a scaling of V

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Attention maps a query, Q and a set of key-value (K, V) pairs to an output. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed by a compatibility
function of the query with the corresponding key.

These will change depending on how the attention mechanism is used

Queries, Keys and What?

● In self-attention, Q == K == V

● Updating the representation of each token

based on the other tokens in the sequence

These will change depending on how the attention mechanism is used

Queries, Keys and What?

● In cross-attention, K == V and

come from the encoder. Q comes

from the decoder.

● The decoder “focuses” on certain

tokens in the encoders output

● Q, K & V are projections of embedded tokens

● If this is a multi-layered network (e.g. a

transformer), they are outputs of the

previous layer

Residuals: Projections

https://jalammar.github.io/illustrated-transformer/

Usually, we use multi-head scaled dot-product attention

Residuals: The Beast with Many Heads

https://jalammar.github.io/illustrated-transformer/

Transformers (covered in lecture)

https://jalammar.github.io/illustrated-transformer/

The Payoff

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

● LMs assign probabilities to sequences and are the “workhorse” of NLP

● Typically implemented with RNNs; being replaced with Transformers

● Multi-head scaled dot-product attention the backbone of Transformers

○ Allows us to learn long range dependencies and parallelize

computation within training examples

● How do we train Transformers as language models?

Before we move on…

Pretrained
Language Models &
Self-Supervised Learning

● We want to train transformers as LMs

○ Learn general properties of language that can be transferred to downstream tasks

● Ideally, we could train LMs using unlabeled text

○ Leverage unsupervised or Self-Supervised Learning (SSL)

● (At least) two paradigms have emerged

○ Generative Pretrained Transformer (GPT)

■ Next-token prediction, decoder only transformer

○ Bidirectional Encoder Representations from Transformers (BERT)

■ Masked language modelling, encoder only transformer

Wishlist

● GPT is a decoder only transformer pretrained on huge amounts of text

● The latest version, GPT-3 is trained on 45TB of unlabelled text

● The (pre)training objective is simply to predict the next token

● For this, we will need to slightly tweak the self-attention…

Generative Pretrained Transformer (GPT)

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).

Future timesteps are masked to prevent decoder from “peaking”

Masked Self-Attention

https://jalammar.github.io/illustrated-gpt2/

Next Token Prediction

https://jalammar.github.io/illustrated-gpt2/

Once pretrained, GPT can be used for any “text in, text out” task

Generative Pretrained Transformer (GPT)

https://beta.openai.com/examples

Once pretrained, GPT can be used for any “text in, text out” task

Generative Pretrained Transformer (GPT)

https://beta.openai.com/examples

● GPT is a unidirectional LM, incorporating context from previous tokens

● This is likely sub-optimal for many token- or sentence-level tasks

● BERT proposes a bidirectional LM based on a transformer encoder

● BERT is pretrained with two self-supervised objectives:

○ Masked Language Modelling (MLM)

○ Next Sentence Prediction (NSP)

Bidirectional Encoder Representations from Transformers (BERT)

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language
understanding." arXiv preprint arXiv:1810.04805 (2018).

Masked Language Modelling (MLM)

https://jalammar.github.io/illustrated-bert/

Next Sentence Prediction (NSP)

https://jalammar.github.io/illustrated-bert/

● BERT has learned rich representations which encode syntax & semantics

○ We can take advantage of this for ”downstream” tasks via using fine-tuning

● Add & initialize a new layer on top of BERTs outputs

○ Use supervised learning to tune all parameters

● Because BERT is pretrained, fine-tuning is typically cheap

○ 3-4 epochs on 100s or 1000s of labelled examples

○ Typically takes a few hours to fine-tune on GPU(s)

● Many, if not most, SOTA methods in NLP incorporate BERT-like models

Fine-tuning BERT

Fine-tuning BERT

https://jalammar.github.io/illustrated-bert/

● For pretrained models and datasets, try HuggingFace

● For NLP specific machine learning library, try AllenNLP

● For a great free textbook, try Speech and Language Processing

● For a great MOOC, try Sequence Models (free with UofT Coursera)

● For great blog posts illustrating these concepts, try

https://jalammar.github.io/

Resources

https://huggingface.co/
https://allenai.org/allennlp
https://web.stanford.edu/~jurafsky/slp3/
https://www.coursera.org/learn/nlp-sequence-models
https://jalammar.github.io/

Thank you for your
attention! (get it?)

March 8th, 2022
University of Toronto
Tutorial 8 CSC413/2516

