The Big Picture

- Natural language (& speech) are central to human intelligence
- **Natural Language Processing (NLP)** attempts to capture some of this intelligence algorithmically and is of huge practical importance
 - machine translation, chatbots, automatic fact checking, ...
- NLP has seen several transformative shifts in the last few years
Goals of this Tutorial

- Build basic NLP literacy by looking at language models
- Get up to date with recent developments
 - BERT, GPT, Self-Supervised Learning (SSL)
- Know where to look if you’re starting an NLP project
- Will focus more on building intuition than math
Language Models
Language Models

Language models (LMs) assign **probabilities** to sequences of words

- **Speech recognition:** $P(\text{I will be back soonish}) > P(\text{I will be bassoon dish})$

- **Spell checkers:** $P(\text{There are two midterms}) > P(\text{Their are two midterms})$

- **Machine translation:**

 他 向 记者 介绍了 主要 内容

 $P(\text{He to reporters introduced main content}) <$

 $P(\text{He briefed reporters on the main contents of the statement}) <$
Anatomy of a Language Model

The probability of a sequence of \(n\) words is the product of the conditional probability of each word and its history (chain rule):

\[
P(w_1:n) = \prod_{k=1}^{n} P(w_k | w < k)
\]

How do we compute the conditional probability? In practice, we take the log sum:
Language Models

- We can use **recurrent** neural networks (RNNs)! E.g. LSTMs, GRUs
- Work well for variable length inputs, like sentences
Language Models

Recurrent neural networks have some shortcomings:

- Not parallelizable within training examples
- Difficult to optimize due to vanishing gradients
- Difficulty modelling long range dependencies
Language Models

We’d like an architectural primitive that:

● Is parallelizable within training examples
 ○ Take advantage of accelerators like GPUs/TPUs
● Directly facilities interactions between tokens
 ○ To better model long range dependencies
● Attention to the rescue?
Attention
Many flavours of attention have been proposed.

We will focus on the most common, (scaled) **dot-product** attention.

Scaled dot-product attention is the backbone of **transformers**.

Like any attention mechanism, we need to make two decisions:

- How to compute similarity? → **dot-product**
- How do we normalize the similarity score? → **softmax**
Scaled dot-product attention takes three matrices as input:

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

A softmax normalizes similarities → [0, 1]

Similarity is simply the dot product between Q and K

The output is simply a scaling of V

Attention maps a query, Q and a set of key-value (K, V) pairs to an output. The output is computed as a weighted sum of the values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding key.

Queries, Keys and What?

These will change depending on how the attention mechanism is used

- In self-attention, $Q == K == V$
- Updating the representation of each token based on the other tokens in the sequence

$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QQ^T}{\sqrt{d_k}} \right) V$$
Queries, Keys and What?

These will change depending on how the attention mechanism is used

- In **cross**-attention, \(K = V \) and come from the encoder. \(Q \) comes from the decoder.
- The decoder “focuses” on certain tokens in the encoders output

\[
\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right)V
\]
Residuals: Projections

- Q, K & V are *projections* of embedded tokens
- If this is a multi-layered network (e.g. a transformer), they are outputs of the previous layer

https://jalammar.github.io/illustrated-transformer/
Residuals: The Beast with Many Heads

Usually, we use **multi-head** scaled dot-product attention

https://jalammar.github.io/illustrated-transformer/
Transformers (covered in lecture)

https://jalammar.github.io/illustrated-transformer/
The Payoff

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Complexity per Layer</th>
<th>Sequential Operations</th>
<th>Maximum Path Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Attention</td>
<td>$O(n^2 \cdot d)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Recurrent</td>
<td>$O(n \cdot d^2)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Convolutional</td>
<td>$O(k \cdot n \cdot d^2)$</td>
<td>$O(1)$</td>
<td>$O(\log_k(n))$</td>
</tr>
<tr>
<td>Self-Attention (restricted)</td>
<td>$O(r \cdot n \cdot d)$</td>
<td>$O(1)$</td>
<td>$O(n/r)$</td>
</tr>
</tbody>
</table>

Before we move on...

- LMs assign **probabilities to sequences** and are the “workhorse” of NLP
- Typically implemented with RNNs; being replaced with **Transformers**
- **Multi**-head **scaled** dot-product attention the backbone of Transformers
 - Allows us to learn long range dependencies and parallelize computation within training examples
- **How do we train Transformers as language models?**
Pretrained Language Models & Self-Supervised Learning
Wishlist

- We want to train transformers as LMs
 - Learn general properties of language that can be transferred to downstream tasks
- Ideally, we could train LMs using unlabeled text
 - Leverage unsupervised or Self-Supervised Learning (SSL)
- (At least) two paradigms have emerged
 - Generative Pretrained Transformer (GPT)
 - Next-token prediction, decoder only transformer
 - Bidirectional Encoder Representations from Transformers (BERT)
 - Masked language modelling, encoder only transformer
Generative Pretrained Transformer (GPT)

- GPT is a decoder only transformer pretrained on huge amounts of text
- The latest version, GPT-3 is trained on 45TB of unlabelled text
- The (pre)training objective is simply to predict the next token
- For this, we will need to slightly tweak the self-attention...

Masked Self-Attention

Future timesteps are **masked** to prevent decoder from “peaking”
Next Token Prediction

https://jalammar.github.io/illustrated-gpt2/
Once pretrained, GPT can be used for any “text in, text out” task.
Generative Pretrained Transformer (GPT)

Once pretrained, GPT can be used for any “text in, text out” task

Grammar correction

Corrects sentences into standard English.

Prompt

Correct this to standard English:

She no went to the market.

Sample response

She didn't go to the market.

English to other languages

Translates English text into French, Spanish and Japanese.

Prompt

Translate this into 1. French, 2. Spanish and 3. Japanese:

What rooms do you have available?

1.

Sample response

Quels sont les chambres disponibles?
2. ¿Cuáles son las habitaciones disponibles?
3. 何室がありますか?
Bidirectional Encoder Representations from Transformers (BERT)

- GPT is a **unidirectional** LM, incorporating context from previous tokens
- This is likely sub-optimal for many token- or sentence-level tasks
- BERT proposes a **bidirectional** LM based on a transformer encoder
- BERT is pretrained with two self-supervised objectives:
 - Masked Language Modelling (**MLM**)
 - Next Sentence Prediction (**NSP**)

Masked Language Modelling (MLM)

Use the output of the masked word's position to predict the masked word.

Possible classes:
- All English words
- Improvisation
- Aardvark
- Zyzzyva

Randomly mask 15% of tokens

Input

https://jalammar.github.io/illustrated-bert/
Next Sentence Prediction (NSP)

Predict likelihood that sentence B belongs after sentence A.

Tokenized Input

Input

1% IsNext
99% NotNext

FFNN + Softmax

https://jalammar.github.io/illustrated-bert/
Fine-tuning BERT

- BERT has learned rich representations which encode **syntax & semantics**
 - We can take advantage of this for "downstream" tasks via using **fine-tuning**
- Add & initialize a new layer on top of BERTs outputs
 - Use **supervised learning** to tune all parameters
- Because BERT is pretrained, fine-tuning is typically cheap
 - 3-4 epochs on 100s or 1000s of labelled examples
 - Typically takes a few hours to fine-tune on GPU(s)
- Many, if not most, SOTA methods in NLP incorporate BERT-like models
Fine-tuning BERT

Input Features

85% Spam
15% Not Spam

Classifier
(Feed-forward neural network + softmax)

Help Prince Mayuko Transfer
Huge Inheritance

https://jalammar.github.io/illustrated-bert/
Resources

- For pretrained models and datasets, try [HuggingFace](https://huggingface.co)
- For NLP specific machine learning library, try [AllenNLP](https://allenai.org/)
- For a great free textbook, try [Speech and Language Processing](https://nlp.stanford.edu/tao-book/)
- For a great MOOC, try [Sequence Models](https://www.coursera.org/learn/sequence-models) (free with UofT Coursera)
- For great blog posts illustrating these concepts, try https://jalammar.github.io/
Thank you for your attention! (get it?)