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Solving Wordle using information theory
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Solving Wordle using information theory

Two intuitive strategies:

1. Choose words with letters that are rare and
will narrow down the list of possible words a
lot

2. Choose words that are common to give you
higher probability of finding a matching letter




12,972 Total words

H8 Possible matches




12,972 Total words
What we want:

160 Possible matches E|Information]| = Zp(x) + (Something)




Want a metric that
would give you an
assessment of the
“informativeness” of the
distribution on the right

We want to select a
word that would result in
the most “informative
distribution”

Want low # of matches
to narrow down the
search space

The more surprising an
outcome is the more
informative it is!

What we want:

E[Information] = Z p(z) - (Something)




The bit

Basic “unit” of
information theory

Space of possibilities Information = 2 bits

=

How many times & =
does an observation oz T | Observation

cut your samples & Hasa
space in half : o

Can assign how
informative /
surprising an
outcome is

bits = log,(p)




Information = 5 bits

Information = 6 bits

E[Il = Zp ) log, (1/p(x))

PN

4.90 bits 5.87 bits

E/A|R]Y L|A|T|E




Entropy

Property of a
probability
distribution

Function of:

1. The uniformity
of probabilities
Number of
possible

outcomes

Information = 5 bits

PN

E[I] = Zp(x) 10g2 (l/p(l')) Information = 6 bits

4.90 bits 5.87 bits

=

A
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Claude Shannon is
the founder of
information theory as
a field

Deciding between
uncertainty and
information

In conversations with
John von Neumann
decided to call it
“Entropy’.

“Nobody knows what
entropy really is so
you will have the
advantage in winning
any arguments that
might erupt”

~enjcropy r
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If you don’t do wordle - -
Imagine two random variables describing S
weather tomorrow and the day after / / \ -
|

H(X) = - 2,p(x) log p(x) 99 9/
H(day,) = 0.99 * log(1/0.99) + 0.01 * log(1/0.01) ©
=0.0807

o

H(day,) = 0.5 * log(1/0.5) + 0.5 * log(1/0.5) e —
=1 / / \

each outcome is equally informative (log,2 = 1)
with probability 1/2 50 %

1%



3 remarkable properties of entropy

1. His a continuous function of p. 1

2. Ifallp are equal H(1/n, ..., 1/n)is a
monotonically increasing function of n

3. If we have composite events X, Y: H(X,Y) =
H(X) + H(Y | X) = H(Y) + H(X|Y)

&
m0.5
Entropy is always positive (discrete case)
What probability distribution has the highest
entropy? 0
Distribution with a single outcome p=1 has H=0 0 0.5

Pr(X = 1)



Mutual information

From here we can describe the amount
of mutual information between two
random variables

Intuitively 1(X; Y) can be interpreted as
“information gain”: expected reduction in
uncertainty about Y as a result of
knowing X.

10X; Y) = H(X) + H(Y) - H(X, Y)
= H(X) - HX|Y)
= H(Y) - H(Y [ X)

H(X)

H(X,Y)

H(Y)



Mutual information

H(X) H H(Y)

H(X,Y)



Mutual information

Properties of mutual and conditional information:

e H(X)=H(X]|Y)

Information can’t hurt (in expectation)
e [(X;Y)>0isnon negative
e Although interestingly not true for I(X ; Y ; Z)

H(X)

H(X,Y)

H(Y)



Want a measure of “distance” between distributions

Wouldn't it be useful to have a measure between
probability distributions?

Properties of distance:

1. dx,y)=0&x=y # indiscernibility
2. d(x,y)=d(y, x) # symmetry

3. d(x,z)=<d(x,y)+d(y,z) #Aineq

4. d(x,y)=0 # non negativity



Kullback—Leibler divergence

()

KL(PIQ) = D pilx)log

P and Q distributions are defined over the same sample
space

Also referred to relative entropy

The lower the KL the closer the two distributions are

I(X; Y) = KL(p(x, y) || p(x) p(y) )



Kullback—Leibler divergence

KLIP|Q) = Y pilallogh ™

Properties of distance:

1. Mdx,y)=0ex=y # indiscernibility
2. X d(x, y)=d(y, x) # symmetry

3. Xd(x,z)<d(x,y)+d(y,z) #Aineq

4. [4d(x,y)=0 # non negativity



How is KL( P || Q) different from KL( Q || P)?

forward KL
D(pliq)
small when g “covers” p

blows up if g =0 anywhere
on the support of p

g is mode covering

reverse KL
D(qllp)
small when g “covered by” p

blows up if g has support any-
where that p does not

q is mode seeking

forward KL small

reverse KL small



Why not both?

Jensen-Shannon divergence We may dislike that KL divergence
is asymmetric, and blows up when g does not cover p. Jensen-
Shannon divergence (JSD) is alternative distance between p and
g that is symmetric, and never blows up. It is defined as:

1 1
JSD(pllq) =1SD(q llp) = SD(plimyq)+ S D(q I myg),  (6)

where m,,, is a 50/50 mixture of p and g (i.e., m,, = 0.5p +0.59).



Cross entropy
Something you're all likely familiar with: used to estimate distance between
predicted distribution and observed in classification problems

Suppose our distribution Q is parameterized by a model (neural net)

H(P,Q) = me)wgﬁ
H(P,Q) = —Ep|log(q)]

H(P,Q)=H(P)+ KL(P||Q)




VAE which uses ELBO came from KL divergence insight

observed variable x (dataset) is a
random sample from an unknown

Prior distribution: pe(z)

underlying process, whose true
(probability) distribution p’(x) is oo
unknown e -,

i 1
approximate this underlying process Encoder: qy(z|x) Decoder: pe(x|z)

with a chosen model p,(x), with
parameters 6. Y/ ‘

X-space

Intractable: pg(:lj) — /pg(x,z)dz Datajet:D




VAE which uses ELBO came from KL divergence insight

Datapoint

Prior distribution: pe(z)

Inference Model | Sample | Generative Model
q(z[x) z p(x,2)
z-space
\ | /
Objective : %
ELBO = log p(x,z) - log q(z|x) "‘
Encoder: qq(z|x) Decoder: pe(x|z)
A
X-space

Dataset: D




Evidence lower bound

log pe(x) = By, (z)x) [log pe(x)]




Optimizing ELBO

Results in optimiizng two things:

1. Maximize the marginal likelihood of py(x)
2. Minimize the KL divergence of approximation q(p(z | x) from the true p(z | x)

Due to the non-negativity of the KL divergence, the ELBO is a lower
bound on the log-likelihood of the data.

Lo,¢(x) = log pg(x) — Dk1.(q¢(2[x)|pe(z|x)) (2.11)
< log pg(x) (2.12)



If you want to learn more...

About info theory:

Cryptography

Answering ill posed questions
Compression

Horse race gambling

Take info theory: ECE1502

Probabilistic machine learning:

e Variational inference
e ELBO
e Graphical models

Take Probabilistic Learning and
Reasoning: CSC412






Notes for CSC413 Tutorial, starred (*) items optional



Some Bits of Information Theory

Information theory allows us to summarize uncertainty about,
and relations between, random variables using real numbers.
Often these numbers can serve as objective functions or con-
straints for algorithms and learning agents. The basic measures
are (1) entropy, (2) mutual information, and (3) relative entropy or
KL divergence. There are a few forms of each and there are impor-
tant differences between the discrete and continuous cases.



Discrete entropy

History & definition: Info theory was founded by Shannon in his
seminal 1948 paper “A mathematical theory of communication”
[10]. To quantify the amount of information contained in a “com-
munication”, Shannon considered a scenario where there is a finite
set of mutually exclusive and collectively exhaustive possibilities
X;, and some pre-communication belief about plausibility p(x;) of
each x;. That is, we have a discrete variable X with pmf p, and
a communication provides information about its value. Shannon
uses H(X) to denote the total uncertainty in X (i.e., the expected
information content of a communication that identifies the true
x;) and asserts the following axioms and theorem:
1. *H is continuous in p(x;).
2. *If x; are equally likely, more alternatives means higher H(X).
3. *If X=(Y,Z), HX)=H(Y,Z)=H(Z) + >, P(z;)H(Y | z;)
(this says that the expected remaining uncertainty H(Y | z;) af-
ter receiving partial information z; ~ Z and the amount of par-
tial information received H(Z) sum to the total uncertainty).



Theorem 1. Given the above axioms, H must have the form:

Hy(X)=—> p(x)log, p(x) (1)

for some base b. The functional H is known as entropy.



Shannon had this to say about the name:

My greatest concern was what to call it. I thought of calling it
‘information,” but the word was overly used, so I decided to call
it ‘'uncertainty.” When I discussed it with John von Neumann,
he had a better idea. Von Neumann told me, "You should call it
entropy, for two reasons. In the first place your uncertainty func-
tion has been used in statistical mechanics under that name, so
it already has a name. In the second place, and more important,
no one knows what entropy really is, so in a debate you will al-
ways have the advantage.’ [11]



The key point of all this history is to get an intuition for where en-
tropy came from, and why entropy has its peculiar —Xp log p form.



*Entropy as expected code length: The base b in Theorem 1
is unspecified. In information theory, we typically use b = 2, in
which case H(X) represents the expected length, in bits, of the
shortest “code” that can be used to communicate the value of X.
E.g., a constant has 0 entropy because we know what it is with-
out any bits of communication. A Bernoulli variable with p = 0.5
requires —log, 0.5 = 1 bit, to tell us whether it is 1 or 0. A cat-
egorical with probabilities (0.5,0.25,0.25) requires an average of
—0.51o0g, 0.5—0.5l0g, 0.25 = 1.5 bits using the code {0,10,11}. In
ML we typically use b = e for convenience, in which case H(X) is
measured in nats.



Some properties

e H(X)=-Ex{p(X)}=Ex{l/p(X)}

e HX)>0 (for discrete entropy only!)
e H,(X)=(log,a)H,(X) (for converting nats < bits)
e Uniform distribution has highest H, and constants have 0 H.



Joint and Conditional Entropies

e Entropy: H(X) =—3,, p(x)logp(x).

e Joint Entropy: H(X Y)= Zx,yp x,y)logp(x,y).

e Cond. Entropy: H(Y | X) = —Zx’y p(x,y)logp(y|x)

e The chain rule for entropy (basically Axiom 3 above) is:

H(X,Y)=H(X)+H(Y|X)

| H[Y | X]

. g
Err s %



e The chain rule for entropy (basically Axiom 3 above) is:
H(X,Y)=H(X)+H(Y|X)

\ H[Y | X]

~
HIX.Y]

The above diagram is helpful visualizing this property. You can
interpret each outline as defining some uncertainty. When the
uncertainty that the shape represents is resolved, we remove the
whole shape. Thus, the union of H(X) and H(Y) forms H(X,Y).
When H(X)is resolved, only part of H(Y) remains: H(Y|X).



Just asin probability, we can condition everything on Z, soitis also
truethat: HX,Y|Z)=HX|Z)+ H(Y |X,Z).



Mutual Information
The little bit in the middle—the information shared between X
and Y—is aptly named the “mutual information” I(X, Y):

IX:;Y]

»
H[X.Y]

From the diagram, we immediately obtain the properties:
e I(X;Y)=HX)-HX|Y)=H(Y)-H(Y|X).

o I(X;Y)=HX)+H(Y)-H(X,Y).

o I(X;X)= H(X).



To confirm the properties algebraically, you can use the definition:

p(x,y)
p(x)p(y)

I(X;Y)= > p(x,y)log
X,y



*MI as Expected Info Gain: Intuitively, we can interpret I(X;Y)
as the expected reduction in uncertainty about Y that results from
knowing X (and vice versa). Thus, mutual information is often
used as an “information gain” objective—e.g., in active learning
[3] and exploration in RL [7]—where we have a (Bayesian) belief 8
about our model parameters 6 ~ @, and we expect next action a
to produce observation o ~ @|a, 8. We seek a that will maximally
reduce the uncertaintyin 8; i.e., our objectiveismax, I1(@; 0 | a, 0).



*Entropy as diversity: Another interpretation of uncertainty is di-
versity. So, e.g., if we want an RL agent to explore a diverse set of
states, or if we wanted to maximize the diversity of hidden activa-
tions across a mini-batch, we might add an entropy bonus to our
objective function. But given our definitions so far, we can only do
this for discrete states / activations. Before we extend entropy to
the continuous case, let’s diverge a bit...



Some Bits of Information Theory
Relative entropy, also known as KL divergence

Cross Entropy To design the optimal code for communicating X,
we need to know p(x). Suppose we only have an approximation of
p; by convention, we denote the approximation as q. How much
longer does our code need to be? The total length of the optimal
code when p is approximated by g is captured by the cross entropy:

H*(p,q) = —» p(x)logq(x). 2)



H*(p,q) = —Zp x)logq(x 2)

NB: Usually H*(p, q) is written as just H(p, g ), which is notation-
ally similar to joint entropy. What H(-,-) refers to will usually be
clear from the context and its arguments: joint entropy is a func-
tion of two variables (often with different ranges), whereas cross
entropy is a function of two distributions on the same domain.



Below, for X with pmf p, we use H(X) and H(p) interchangeably.

Accepting that H(p) = H*(p, p) is the optimal code length given
the true distribution, and H*(p, q) is the optimal code length
given a suboptimal distribution (it’s true, but we haven’t proved ei-
ther), it is intuitive that H*(p, q) > H*(p, p). Then the difference
H*(p,q) — H(p) can be used measure the distance “from g to p”;
i.e., it a measure of how good an approximation ¢ is to p. We can
use this to define relative entropy or KL divergence D(p || q):

H(p) Dip || )
e -
( '8 |
optimal expected code length inefficiency of using q
L )
~

H*(p,q)



KL divergence Using the definitions of H(p), H*(p, q), we have:

D(pllg)=H"(p,q)—H"(p,p) =Zp(x)log%, (3)

0  _
q>=0 —

where 0log 0 and (p > 0)log ’%O = o0 by convention.



Non-negativity of KL divergence From the above figure, we have
D(p|lqg) = 0 with equality if and only if p = g. Algebraically,

g )_l ogE, ﬂ = logl =0, (4)

p(x) p(x)

where we've used Jensen’s inequality (which says that for convex
f,wehave Ef(X) > f(EX), and vice versa for concave f.)

—D(pllq) = E,log



*Convexity and concavity of H,I,and D

e KL divergence is convex in both arguments.

e Entropyis concave (H(Ap,+(1—A)p,) =2 AH(p,)+(1—A)H(p,)).

e Let(X,Y)~ p(x,y) = p(x)p(y|x). Fixing p(x), I(X;Y) is con-
vexin p(y | x). Fixing p(y | x), I(X; Y) is concavein p(x).



*KL as a starting point: we motivated KL divergence from a code
length perspective. But it may actually be a better analytical start-
ing point than entropy, insofar as (1) itis better behaved in the con-
tinuous case, and (2) we can define both H and I in terms of D:

o H(X)=1logn—D(p| % (n))for a n-valued variable X ~ p
(prove by putting g = % (n) in (3))
e I(X;Y)=D(p(x,y)llp(x)p(y)) (easily verified)



Corollaries

e /(X;Y)>0O.
e H(X|Y) < H(X) (information can’'t hurt).



Minimizing KL and log likelihood. If our approximation ¢, of p
is parameterized by 0 (e.g., it is a neural network), notice that:

argmin D(p || qp) = argminH " (p, gp) = argmaxE, loggy(x).  (5)

Thus, minimizing KL divergence is the same as minimizing cross
entropy, which is the same as maximizing log likelihood.



Forward and reverse KL Occasionally we have a choice between
minimizing D(p||qg) and D(q || p) to make p and g more similar.
KL is asymmetric, and there is an important differences between
the two objectives. In particular, when p and g are in the usual
(forward) alphabetical order, D(p || q) is known as forward KL. In
reverse alphabetical order, D(q || p), corresponds to reverse KL.



forward KL reverse KL
D(pllq) D(qllp)
small when g “covers” p small when g “covered by” p

blows up if g =0 anywhere blowsupif g has support any-
on the support of p where that p does not

q is mode covering g is mode seeking




forward KL small

reverse KL small

In the top half of the figure, the green single hump (g) “covers” the
two blue humps (p), so that forward KL is small. In the bottom
half, the single hump (q) seeks out the mode of the two humps (p)
and forward KL is very large (or 00), while reverse KL is small.



Jensen-Shannon divergence We may dislike that KL divergence
is asymmetric, and blows up when g does not cover p. Jensen-
Shannon divergence (JSD) is alternative distance between p and
q that is symmetric, and never blows up. It is defined as:

1 1
ISD(p ll4) =JSD(qllp) = 5 D(plImyq)+ 5 D(GlImy,).  (6)

where m,,, is a 50/50 mixture of p and g (i.e., m,, = 0.5p +0.59).



*Mutual information characterization of JSD and GANs Sup-
pose variable X is drawn from mixture m,,, between p and q (e.g.,
p is real data and q is data generated by a GAN generator), and
binary variable Z ~ Bernoulli(0.5) identifies the active mixture
component (e.g., Z is the label the GAN discriminator is trying
to guess). It turns out that I(X;Z) = JSD(p; q). Thus, if we view
the traditional objective for the GAN generator as optimizing JSD
(assuming optimal discriminator; see proof of Theorem 1 in [6)),
it can also be understood as minimizing the mutual information
between the mixture data and its source. Proof:

I1(X;Z)=H(X) — H(X|Z)

== mpqlogmyg + 5[ plogp+ Y qlog]
= —% [Zplogmpq +quogmpq]+ % [Zplogp +Zq1084]

1
— 5 [Z p(lng —log mpq) +Zq(logq —lOg mpq)]
=]JSD(p | q).

Since the I(X;Z) < min(H(X), H(Z)) and we have H(Z) = 1 when
using bits (base 2), this also proves that 0 < JSD(p||q) < 1, Vp,q.



Variational Approximations

When we have a function f or distribution p that is unknown or
intractable, we can sometimes approximate it by solving an opti-
mization problem. This is known as a “variational approach”.



*Variational approach to logx [8] To understand the usage of the
term, consider a variational approach to computing log x. As you
can verify by differentiating, logx = ming(60x —logf —1). Thus
we can compute log x by introducing variational parameter 8 and
minimizing the variational upper bound 60 x —log 0 — 1.



Variational inference If we use a variational approach to Bayesian
inference, we are doing variational inference. Typically our model
is a joint distribution p(x,z) = p(z)p(x|z) (e.g., z is the latent
cause of observation x) and we seek a variational approximation
dy(z) to the model posterior p(z| x). For arbitrary g(z) we have:

logp(x) = 10gE ;)P (2)p(x | 2)

ZIOgEvaq Zg;p( | z)

p(z) o

q(z) p(x|z)
= Eznq(e)[P(x12)]—D(q(2)l p(2)),
where the second line uses importance sampling and the third

uses Jensen’s inequality. The final line is the variational or evidence
lower bound (ELBO) on log p(x). While this “I.S.-Jensen” deriva-

2 E g z)log ——



lower bound (ELBO) on log p(x). While this “I.S.-Jensen” deriva-
tion is simple, the following “KL-Bayes” one is more illuminating:

D(q(z)|lp(z|x)) = Ezng(z)
= Ezng(2)
= Eznglz)

logq(z)—logp(z|x)]
logq(z)—log p(x | z)—logp(z) +1logp(x)]

logp(x|2)]+D(q(z)|l p(z)+logp(x),

where the second line uses Bayes theorem. Rearranging we get:
logp(x)—D(q(2)|I p(2| x)) = Ezngz) | P(x12)|—D(q(2) I p(2)).  (8)



This derivation precisely quantifies the difference between
logp(x) and the ELBO (RHS) as D(qg(z)||p(z|x)). Now g(z) was
arbitrary, so if we parameterize q,(z| x) to make this difference
small, and parameterize our data model py(x,z) = py(z)py(z | x),
we recover the cost function for the variational autoencoder [9]:

J(0,¢, %) =By z1x) [Po(xi 1 2)]+ D(gy (2] X)) p(2)). ()



*Variational approximations to I, D, E(X) As you can infer, find-
ing variational approximations requires some inventiveness. So
it’s instructive to see a few more examples.

The following upper and lower bounds on I(X; Y), due to [1], are
similar to the above in that they replace some p with variational
approximation g to obtain a bound with tightness in terms of
D(q||p)or D(p||q). First the upper bound on I(X; Y):

p(ylx)(q(y)
1Y) =By ynp(x,y)]
I(X;Y) = Ex,y~p(x,y) 108 p(y) (CI(J’))

p(ylx)
q(y) ]+EJ’~P(J’) [108
ylx)

]

Y)lg(y)

= ]Ex’}’”p(x»J’) llog (10)

= Exnp0)Ey~p(y ) [108

< Exnp)D(p(y [x)]] q(y)).



Similarly, we can obtain a variational lower bound on I(X; Y ):

I(X; Y) = ]Ex,y~p(x,y)log

= Ex,y~p(x,y)

= Ex,y~p(x,y)

2 Ex,y~p(x,y)

p(xly)(q(xly))

p(x) \q(x|y)
- (x]y) (x]y)
log quExJ), ]+]Ey~p(y)IEx~p(xly) [log Z(i | i)]

logq(x|y)]+H(X)+E ;. pD(p(y | 2)1g(»))

logq(x|y)]+H(X).



We also state the Donsker-Varadhan (DV) formula for D(p||q):
D(pllq) = sup E,[f]|-logE,|exp(f)]. (11)
f:X-R

If f in the right hand side is parameterized by a neural network,
we obtain a variational lower bound on D(p || g) [5, 2].



Finally, we state a variational formula for E,(x):

l0gE o p(x)(X) = Sug[]Evaq(x)(log x)—D(q(x)|| p(x))] (12)
ge

where Q is the set of distributions (q(x) > 0, > _g(x) = 1). Youcan
prove this extremizing the Lagrangian of the RHS ([4], (8.93)).



*Differential Entropy (briefly)

When X is continuous with density p, we define “differential” en-
tropy h(X) (or h(f)) as the continuous analog to the discrete case:

h(X) = —J p(x)logp(x)dx. (13)
supp(X)

E.g., X ~ %(0,a) has h(X)=— [ 2log2dx =loga. Unlike the
discrete case, h(X) can be negative! We see h(X) scales with the
size of X’s support. So unlike the discrete case, where H(f(X)) <
H(X), applying f can increase differential entropy.



To understand why differential entropy behaves differently, con-
sider the discrete entropy of an n-bit quantization of continuous
variable X with pdf f and support [0,1]. Letting A = 1/2" repre-
sent the width of each of the 2" bins. The i-th bin has probability
Af (iA), so that discretized X has entropy:
H(X™) =52 IAf(iA)logAf (iA)
—2 IAf(iA)log f(iA)—Z P Af (iA)logA  (14)
= 32" LA f(iA)log f (iA)—logA.

As n — o0, the second term blows up, while the first term ap-
proaches h(X)if f(x)log f(x) is Riemann integrable.



Fortunately, I(X;Y)=H(X)—H(X|Y)and D(p||q) = H*(p,q)—
H(p) are both differences—when we quantize each term as above,
the log A cancels out, and the remainder is (often) finite (so long
as their integral exists). Unlike entropy, I and D retain their prop-
erties in continuous case—i.e., we still have D(p || g) > 0.
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