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Two intuitive strategies:

1. Choose words with letters that are rare and 
will narrow down the list of possible words a 
lot

2. Choose words that are common to give you 
higher probability of finding a matching letter







Want a metric that 
would give you an 
assessment of the 
“informativeness” of the 
distribution on the right

We want to select a 
word that would result in 
the most “informative 
distribution”

Want low # of matches 
to narrow down the 
search space

The more surprising an 
outcome is the more 
informative it is!



The bit

Basic “unit” of 
information theory

How many times 
does an observation 
cut your samples 
space in half

Can assign how 
informative / 
surprising an 
outcome is

bits = log2(p)





Entropy

Property of a 
probability 
distribution

Function of:

1. The uniformity 
of probabilities

2. Number of 
possible 
outcomes



Claude Shannon is 
the founder of 
information theory as 
a field

Deciding between 
uncertainty and 
information

In conversations with 
John von Neumann 
decided to call it 
“Entropy”.

“Nobody knows what 
entropy really is so 
you will have the 
advantage in winning 
any arguments that 
might erupt”



If you don’t do wordle

Imagine two random variables describing 
weather tomorrow and the day after

H(X) = - ∑xp(x) log p(x)

H(day1) = 0.99 * log(1/0.99) + 0.01 * log(1/0.01) 

= 0.0807

H(day2) = 0.5 * log(1/0.5) + 0.5 * log(1/0.5) 

= 1

each outcome is equally informative (log22 = 1) 
with probability 1/2



3 remarkable properties of entropy

1. H is a continuous function of pi

2. If all pi are equal H(1/n, …, 1/n) is a 
monotonically increasing function of n

3. If we have composite events X, Y:  H(X, Y) = 
H(X) + H(Y | X) = H(Y) + H(X | Y)

Entropy is always positive (discrete case)

What probability distribution has the highest 
entropy?

Distribution with a single outcome p=1 has H=0



Mutual information

From here we can describe the amount 
of mutual information between two 
random variables

Intuitively I(X; Y) can be interpreted as 
“information gain”: expected reduction in 
uncertainty about Y as a result of 
knowing X.

I(X; Y) = H(X) + H(Y) - H(X, Y) 

= H(X) - H(X | Y)

= H(Y) - H(Y | X)



Mutual information



Mutual information

Properties of mutual and conditional information:

● H(X) ≥ H(X | Y)                                 
Information can’t hurt          (in expectation)

● I(X ; Y) > 0 is non negative
● Although interestingly not true for I(X ; Y ; Z)



Want a measure of “distance” between distributions

Wouldn’t it be useful to have a measure between 
probability distributions?

Properties of distance:

1. d(x, y) = 0 ⇔ x = y               # indiscernibility
2. d(x, y) = d(y, x)                    # symmetry
3. d(x, z) ≤ d(x, y) + d(y, z)      # ∆ ineq
4. d(x, y) ≥ 0  # non negativity



Kullback–Leibler divergence

P and Q distributions are defined over the same sample 
space

Also referred to relative entropy

The lower the KL the closer the two distributions are

I(X; Y) = KL( p(x, y) || p(x) p(y) )



Kullback–Leibler divergence

Properties of distance:

1. ✅ d(x, y) = 0 ⇔ x = y               # indiscernibility 
2. ❌ d(x, y) = d(y, x)                    # symmetry
3. ❌ d(x, z) ≤ d(x, y) + d(y, z)      # ∆ ineq
4. ✅ d(x, y) ≥ 0      # non negativity



How is KL( P || Q) different from KL( Q || P)? 



Why not both?



Cross entropy

Something you’re all likely familiar with: used to estimate distance between 
predicted distribution and observed in classification problems

Suppose our distribution Q is parameterized by a model (neural net)



VAE which uses ELBO came from KL divergence insight

observed variable x (dataset) is a 
random sample from an unknown 
underlying process, whose true 
(probability) distribution p*(x) is 
unknown

approximate this underlying process 
with a chosen model pθ(x), with 
parameters θ.

Intractable: 



VAE which uses ELBO came from KL divergence insight



Evidence lower bound



Optimizing ELBO

Results in optimiizng two things:

1. Maximize the marginal likelihood of pθ(x)
2. Minimize the KL divergence of approximation qφ(z | x) from the true pθ(z | x)



If you want to learn more…

About info theory:

● Cryptography
● Answering ill posed questions
● Compression
● Horse race gambling

Take info theory: ECE1502 

Probabilistic machine learning:

● Variational inference
● ELBO
● Graphical models

Take Probabilistic Learning and 
Reasoning: CSC412 
























































































