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Reminder: What is a GAN?

● Generative: generate an image (or 

other data) from a random code vector

● Adversarial: generator and 

discriminator are competing during 

training



Examples

[6] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of GANs for Improved Quality, Stability, and Variation” 



Drawbacks of GANs

● Not known if they truly model the underlying distribution of the data

● Can be tricky to train properly

● Hard to evaluate quantitatively

● No control over the generated image content



Example #1: Manipulating image content

[2]



Finding the meaning of hidden units

[2]



Demo: Manipulate generated images by activating 
hidden units

https://gandissect.csail.mit.edu/ 

https://gandissect.csail.mit.edu/


Image-to-Image translation with CycleGANs

[10]



Reminder: CycleGAN Architecture

[10]



Example #2: Image-to-image translation in 
microscopy
● There are many kinds of microscopes, that vary over: 

○  speed

○ resolution

○ types of structures you can see

○ amount of energy used

○ if the sample can be re-imaged

○ cost

● Translating from one kind of image to another using deep learning can save cost and allow 

easier downstream processing of information



Example #2: Neuron reconstruction

● https://www.youtube.com/watch?v=h6dF0htsTFc 

https://www.youtube.com/watch?v=h6dF0htsTFc


Segmentation-Enhanced CycleGAN 
Michał Januszewski, Viren Jain - Google AI Research, 2019

[8]
Original Data (X) New Data (Y)



Segmentation-Enhanced CycleGAN
1 2

3

[8]



Segmentation-Enhanced CycleGAN
New component!

[8]



Evaluation

[8]



Caveats

● Again, no theoretical guarantee that we are modeling the underlying data distribution

● Be careful generalizing to different kinds of data
○ If structures are present in dataset Y that are not present in dataset X, these may be erased

○ If realistic neurons look different in Y than X, the discriminator will encourage them to be 

similar



Example #3: Interpreting a deep classifier

● Interpreting deep neural networks is an extremely popular area of research - why?
○ Show trustworthiness

○ Improve the model

○ Learn something about the data



Detecting Racial Features in Medical Images
● Neural networks can detect the race of patients from a variety of medical images 

(chest X-ray, chest CT scan, hand X-ray, and mammogram)  with high accuracy, while 

human experts cannot [1]
White patient Black patient

MIMIC-CXR Dataset [4, 9]



Interpreting a classifier

● One possible question: What would have to change about the input to change the 
output class?

?

Classifier

Classifier Black

White
Real image

Counterfactual 
image



Generating counterfactuals

● Ways to generate counterfactuals
○ Find “closest” neighbors in the training set from the other class 

○ Mutate the input to optimize another class by examining the gradients of the classifier

○ Create paired images with CycleGAN that translate from one class to another! [1]

[1] N. Eckstein, A. S. Bates, G. S. X. E. Jefferis, and J. Funke, “Discriminative Attribution from Counterfactuals” 



Our CycleGAN Architecture

● G is a CNN with residual 

connections

● D is a PatchGAN

● Completely separate from 

previously trained racial classifier

○ Can use race classifier to 

evaluate “success”

○ 10-20% success rate at 

fooling the race classifier



Results



Results



Caveats and Open Questions

● As always, we are not guaranteed to model the underlying data distribution

○ We just want to interpret the classifier! Cannot claim these are all the 

differences, or the only differences between the x-rays of black and white 

patients

● Can we quantify this difference in intensity between X-rays from black and white 

patients?

● Do diagnoses remain constant across translated X-rays?



Conclusion

● GANs can be used in a wide variety of applications: computer graphics, image 

translation for transfer learning, network interpretability, and more!

● Always be careful about what you can and cannot claim about the output of your GAN
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