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Problem Setup
State

st : state at time step t. Is a complete description of the
task/environment (assume full observability for simplicity in this
tutorial), and is input to the agent

at : action taken by the agent at time step t (output from the agent)
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Problem Setup
State

st : state at time step t. Is a complete description of the
task/environment (assume full observability for simplicity in this
tutorial), and is input to the agent
at : action taken by the agent at time step t (output from the agent)

Examples:
st = agent location on grid, at = movement direction
st = financial data, at = buy or sell
st = sequence of frames from a video, at = game action / robot
movement
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Problem Setup
Agent’s Policy

“Agent” is an abstract concept, but we can formulate how the agent
behaves by a policy. This can be a conditional distribution that is
parameterized by θ:

pθ(at |st) = πθ (at |st) = π (at |st ;θ)
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Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

S = state space (set of possible states)

A = action space (set of possible actions)

If both S and A are discrete and small, can simply use a table of
mappings from states to probability distributions over actions
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Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

S = state space (set of possible states)

A = action space (set of possible actions)

If both S and A are discrete and small, can simply use a table of
mappings from states to probability distributions over actions

If A is discrete, but S is continuous or too large (e.g. Atari), use a
function approximator such as NN to map the state vector s to the
distribution over actions using softmax for the output layer

Stephen Zhao CSC413/2516 Tutorial 11 March 29, 2022 6 / 39



Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)
Based on the problem, implement different types of stochastic policy

S = state space (set of possible states)
A = action space (set of possible actions)
If both S and A are discrete and small, can simply use a table of
mappings from states to probability distributions over actions
If A is discrete, but S is continuous or too large (e.g. Atari), use a
function approximator such as NN to map the state vector s to the
distribution over actions using softmax for the output layer
If both S and A are continuous or too large (e.g. Robot control),
map s to parameters associated with distributions such as µ and σ2

for Gaussian distribution. Then sample actions from the distribution
(A simpler solution is to discretize continuous action space. e.g. OpenAI

Dota2 bot [1])
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Problem Setup
Trajectory

τ = trajectory, a record of states and actions over T time steps

Trajectory is a set of random variables, and its distribution is a joint
distribution over 2T + 1 r.v.:

τ = (s1, a1, s2, ..., sT , aT , sT+1)

p(τ ;θ) = p (s1, a1, s2, ..., sT , aT , sT+1;θ) = (⋆)

�1 �2 �� ��+1

�1 �2 ��

∼ �( | , )��+1 ��+1 �� ��

∼ ( | )�� �� �� ��
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Problem Setup
Trajectory

We can simplify using conditional independences from DAG (Markov
assumption, state is a complete description):

(⋆) = ρ0(s1)Π
T
t=1πθ(at |st)p(st+1|st , at)

Remark: we will use p(τ ;θ) to denote that changing our policy
parameters θ induce a different trajectory distribution

�1 �2 �� ��+1

�1 �2 ��

∼ �( | , )��+1 ��+1 �� ��

∼ ( | )�� �� �� ��
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Problem Setup
How to sample a trajectory (Run/Execute an agent)

“Running/Executing the agent in a environment” means ancestral
sampling from this DAG. (Sample the parent node and successively
sample the child nodes)

s1 ∼ ρ0(s) at ∼ πθ(at |st) st+1 ∼ p(st+1|st , at)

�1 �2 �� ��+1

�1 �2 ��

∼ �( | , )��+1 ��+1 �� ��

∼ ( | )�� �� �� ��

Stephen Zhao CSC413/2516 Tutorial 11 March 29, 2022 10 / 39



Objective in Reinforcement Learning
Reward, Return

Reward rt = R(st , at) measures how well action at is in state st for
the agent. This is computed by a blackbox function R(st , at) from
the environment
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Objective in Reinforcement Learning
Reward, Return

Reward rt = R(st , at) measures how well action at is in state st for
the agent. This is computed by a blackbox function R(st , at) from
the environment

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

Stephen Zhao CSC413/2516 Tutorial 11 March 29, 2022 12 / 39



Objective in Reinforcement Learning
Reward, Return

Reward rt = R(st , at) measures how well action at is in state st for
the agent. This is computed by a blackbox function R(st , at) from
the environment

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

Return is also a random variable because it is a function of 2T
random variables in the trajectory
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Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ )] = Eτ∼p(τ ;θ) [R(τ )] = (⋆)
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Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ )] = Eτ∼p(τ ;θ) [R(τ )] = (⋆)

And by ancestral sampling, we can further simplify:

(⋆) = E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

R(st , at)

]
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Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Our goal: find the optimal policy θ∗ = argmaxθJ (θ)

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk
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Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk

Gradient of the objective w.r.t policy (Policy Gradient)

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ

=

∫
∇θp(τ ;θ)R(τ ) dτ

Side note: We can take the gradient inside the expectation because of
Leibniz’s integral rule
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ

=

∫
∇θp(τ ;θ)R(τ ) dτ

=

∫
p(τ ;θ)∇θ log p(τ ;θ)R(τ ) dτ ∵ ∇θ log p(τ ;θ) =

∇θp(τ ;θ)

p(τ ;θ)
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step1)

Step1 using log-derivative trick

∇θJ (θ) = ∇θ E
τ∼p(τ ;θ)

[R(τ )]

= ∇θ

∫
p(τ ;θ)R(τ ) dτ

=

∫
∇θp(τ ;θ)R(τ ) dτ

=

∫
p(τ ;θ)∇θ log p(τ ;θ)R(τ ) dτ ∵ ∇θ log p(τ ;θ) =

∇θp(τ ;θ)

p(τ ;θ)

= E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)Π

T
t=1πθ(at |st)p(st+1|st , at)

)︸ ︷︷ ︸
1○

[
T∑

t′=1

R(st′ , at′)

]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)Π

T
t=1πθ(at |st)p(st+1|st , at)

)︸ ︷︷ ︸
1○

[
T∑

t′=1

R(st′ , at′)

]
where 1○ = ∇θ

(
log ρ0(s1) +

T∑
t=1

log πθ(at |st) +
T∑
t=1

log p(st+1|st , at)

)
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Step2)

Step2 using conditional independences

E
τ∼p(τ ;θ)

[∇θ log p(τ ;θ)R(τ )] Now use ancestral sampling

= E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

∇θ log
(
ρ0(s1)Π

T
t=1πθ(at |st)p(st+1|st , at)

)︸ ︷︷ ︸
1○

[
T∑

t′=1

R(st′ , at′)

]
where 1○ = ∇θ

(
log ρ0(s1) +

T∑
t=1

log πθ(at |st) +
T∑
t=1

log p(st+1|st , at)

)

=�����:0
∇θρ0(s1) +

T∑
t=1

∇θ log πθ(at |st) +
T∑
t=1�

��������:0

∇θ log p(st+1|st , at)
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

≈ 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθk
(a

(i)
t |s(i)t )

[
T∑

t′=1

R(s
(i)
t′ , a

(i)
t′ )

]]

In practice, this gradient is estimated by executing the policy πθk
in the

environment N times (N times ancestral sampling).
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Policy Optimization by Policy Gradient Ascent
Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

≈ 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθk
(a

(i)
t |s(i)t )

[
T∑

t′=1

R(s
(i)
t′ , a

(i)
t′ )

]]

The log-derivative trick in step 1 allows for this type of gradient estimate
of the expected value even though the thing inside the expectation was a
blackbox function using samples from the parameterized distribution.
This is known as the score function estimator, or the REINFORCE

gradient estimator
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REINFORCE Algorithm

Putting the above together, we get the most simple policy gradient
method, the REINFORCE algorithm:

1 Sample
{
τ i
}
from πθ (at | st) (run in the environment)

2 Compute the gradient estimate: ∇θJ (θ)|θk
≈

1
N

∑N
i=1

[∑T
t=1∇θ log πθk

(a
(i)
t |s(i)t )

[∑T
t′=1 R(s

(i)
t′ , a

(i)
t′ )
]]

3 Update the policy via gradient ascent

4 Repeat the above
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Applying Policy Gradient for Playing Dota2
Successful application of policy optimization by policy gradient

In Dota2, each team has five players controlling their unique agents.
Players gather gold by killing monsters and enemies to buy items.
The final objective is destroy an enemy structure called Ancient.
OpenAI agents won against the best team in the world [1]
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Applying Policy Gradient for Playing Dota2
Observation (Input of the policy)

State S: 16000-dimensional vector with information such as the
distances to the observed enemies. But it is partially observable
(limited vision, cannot see whole map), so not actually a state.
LSTM is used to make use of information from previous observations.
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Applying Policy Gradient for Playing Dota2
Action (Output of the policy)

Action A: Continuous, but discretized into 8000-80000 actions
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Applying Policy Gradient for Playing Dota2
Policy optimization by policy gradient ascent

Besides winning the game, intermediate rewards (e.g. for killing
enemies) are provided. PPO, an improved policy gradient method , is
used to train the policy with the Adam optimizer

Rollouts are done using self-play against a mixture of the current bot
and previous versions [1]
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Reward-to-go Policy Gradient

The rewards R(s1, a1), ...R(st−1, at−1) obtained before taking the
action at should not tell you how good action at is.

Intuitively, “I should evaluate my current action based only on how it
affects my future”

This claim is saying:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

= E
s1∼ρ0(s)

at∼πθk
(at |st)

st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=t

R(st′ , at′)

]]

Proved using the DAG structure and expected grad-log-prob = 0 (Appendix)
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Reducing Variance of Policy Gradient Estimate by Baseline

Gradient of the objective was an expectation, so we can only compute the
gradient estimate (which is a random variable) from sampled trajectories:

ĝ = ∇̂θJ (θ) =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )

]]

As ĝ is random, we can talk about bias and variance.
The estimator is unbiased: E [ĝ] = g = ∇θJ (θ).
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Reducing Variance of Policy Gradient Estimate by Baseline

Gradient of the objective was an expectation, so we can only compute the
gradient estimate (which is a random variable) from sampled trajectories:

ĝ = ∇̂θJ (θ) =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )

]]

As ĝ is random, we can talk about bias and variance.
The estimator is unbiased: E [ĝ] = g = ∇θJ (θ).

Now consider a baseline of the state value function (true expected return):

ĝ′ =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )− Vπθ

(s
(i)
t )

]]

where Vπθ
(st) is random since st is random in this context.
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Reducing Variance of Policy Gradient Estimate by Baseline

This new gradient estimate ĝ′ is unbiased so we can use it for policy
gradient ascent (derivations in Appendix):

E
[
ĝ′
]
= ∇θJ (θ)
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Reducing Variance of Policy Gradient Estimate by Baseline

This new gradient estimate ĝ′ is unbiased so we can use it for policy
gradient ascent (derivations in Appendix):

E
[
ĝ′
]
= ∇θJ (θ)

However, the variance is usually decreased, as there tends to be a
strong positive correlation between the empirical rewards for
(st , at , ...) and the value function evaluation for the sampled state

(see Appendix for details)

Intuitively, the advantage (return - baseline) measures how much
better or worse any action is relative to the expected return in the
current state under the current policy
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Demo in PyTorch
(Credit to 2019 CSC421 RL tutorial)
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Appendix

Reward-to-go Policy Gradient (Proof)
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Reward-to-go Policy Gradient (Proof)

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]
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Some remarks before we get started

Remark: separating expectation over multiple R.V.s

E
A,B

[f (A,B)] =

∫
A,B

P(A,B)f (A,B)

=

∫
A

∫
B
P(B | A)P(A)f (A,B)

=

∫
A
P(A)

∫
B
P(B | A)f (A,B)

=

∫
A
P(A)E

B
[f (A,B) | A]

= E
A
[[E
B
[f (A,B) | A]]
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Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity
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Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
E

st ,at
[∇θ log πθk

(at |st)R(st′ , at′)|st′ , at′ ]
]

by Remark

recall Remark: EA,B [f (A,B)] = EA[[EB [f (A,B) | A]]

Stephen Zhao CSC413/2516 Tutorial 11 March 29, 2022 5 / 19



Reward-to-go Policy Gradient (Proof)

Proved using the DAG structure and expected grad-log-prob equal 0:

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

=
T∑
t=1

T∑
t′=1

E
st ,at ,st′ ,at′

[∇θ log πθk
(at |st)R(st′ , at′)] by linearity

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

[
E

st ,at
[∇θ log πθk

(at |st)R(st′ , at′)|st′ , at′ ]
]

by Remark

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

R(st′ , at′) E
st ,at

[∇θ log πθk
(at |st)|st′ , at′ ]︸ ︷︷ ︸

(⋆) apply Remark again


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Reward-to-go Policy Gradient (Proof)

=
T∑
t=1

T∑
t′=1

E
st′ ,at′

R(st′ , at′)Est
 E
at∼p(at |st ,st′ ,at′ ;θk )

[∇θ log πθk
(at |st)|st ]︸ ︷︷ ︸

(⋄)

|st′ , at′




recall Remark: EA,B [f (A,B)] = EA[[EB [f (A,B) | A]]
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Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��
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Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��

Hence, if t ′ < t, p(at |st , st′ , at′ ;θ) = p(at |st ;θ) = πθ(at |st)

Stephen Zhao CSC413/2516 Tutorial 11 March 29, 2022 9 / 19



Reward-to-go Policy Gradient (Proof)
Final step using DAG structure and Expected grad-log-prob equal 0

From the graphical model, we can observe the conditional independence
when t ′ < t:

��
′ ��

��
′ ��

�� ��
′

�� ��
′⊥⊥ , |�� ��

′ ��
′ ��

⊥⊥ , |�� ⧸ ��
′ ��

′ ��

Hence, if t ′ < t, p(at |st , st′ , at′ ;θ) = p(at |st ;θ) = πθ(at |st)

(⋄) = Eat∼πθ(at |st) [∇θ log πθ(at |st)|st ] =
∫

πθ(at |st)∇θ log πθ(at |st) dat

=

∫
∇θπθ(at |st) dat = ∇θ

∫
πθ(at |st) dat = ∇θ1 = 0
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Reward-to-go Policy Gradient

Hence, all the reward terms for t ′ < t will naturally disappear when taking
the expectation over τ = (s1, a1, ...., sT , aT , sT+1)

Reward-to-go Policy Gradient

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=t

R(st′ , at′)

]]
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Appendix

Reducing Variance of Policy Gradient Estimate by Baseline
(Derivations)
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Reducing Variance of Policy Gradient Estimate by Baseline

ĝ′ =
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )− Vπθ

(s
(i)
t )

]]

=
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
T∑

t′=t

R(s
(i)
t′ , a

(i)
t′ )

]]

− 1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
Vπθ

(s
(i)
t )
]]

= ĝ − f

E [f] = E

[
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(a
(i)
t |s(i)t )

[
Vπθ

(s
(i)
t )
]]]

= E

[
1

N

N∑
i=1

[
T∑
t=1

∇θ log πθ(at |st) [Vπθ
(st)]

]]
τ i i.i.d
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Reducing Variance of Policy Gradient Estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ

(st) E
at∼πθ

[∇θ log πθ(at |st)|st ]
]

out from inner E
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Reducing Variance of Policy Gradient Estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ

(st) E
at∼πθ

[∇θ log πθ(at |st)|st ]
]

out from inner E

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ

(st)

∫
πθ(at |st)∇θ log πθ(at |st) dat

]
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Reducing Variance of Policy Gradient Estimate by Baseline

Similar to the derivation in Reward-to-go PG, the expected grad-log-prob
equal 0 is also useful here.

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ

(st) E
at∼πθ

[∇θ log πθ(at |st)|st ]
]

out from inner E

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ

(st)

∫
πθ(at |st)∇θ log πθ(at |st) dat

]

=
1

N

N∑
i=1

T∑
t=1

Est

[
Vπθ

(st)

∫
∇πθ(at |st) dat

]
= · · ·

=
1

N

N∑
i=1

T∑
t=1

Est [Vπθ
(st)0]

= 0
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Reducing Variance of Policy Gradient Estimate by Baseline

E
[
ĝ′
]
= E [ĝ − f] = E [ĝ]− E [f] = g + 0 = ∇θJ (θ)

Hence, this new gradient estimate ĝ′ is unbiased so we can use it for
policy gradient ascent.
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Reducing Variance of Policy Gradient Estimate by Baseline

E
[
ĝ′
]
= E [ĝ − f] = E [ĝ]− E [f] = g + 0 = ∇θJ (θ)

Hence, this new gradient estimate ĝ′ is unbiased so we can use it for
policy gradient ascent. But the point is that we want to decrease the

variance by:

Var(ĝ′) = Var(ĝ) +Var(f)− 2Cov(ĝ, f) ≤ Var(ĝ)

if Cov(ĝ, f) ≥ 1

2
Var(f)

In practice, we do see strong positive correlations between ĝ and f because
the empirical rewards for (st , at , ...) and the value function evaluation for

the sampled state st do positively correlate.
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