
Generative Models & Graph Neural Networks

HW4 is out! (Due on April 11, 40~50% less)
HW3 is due March 31
Grades for A1&A2, Comments for Proposals are released!

Quiz: Which face image is fake?

A B C

LLMs (e.g., GPTs)

Deep nonlinear autoencoders learn to project the data onto
a low-dimensional nonlinear manifold.

Variational Auto-encoder (VAE)

Encoder learns the distribution of latent
space given the observations.

Decoder learns the generative process
given the sampled latent vectors.

Sampling process in the middle.

Source: https://iagtm.pressbooks.com/chapter/story-platos-allegory-of-the-cave/

Note: A good exercise for students!

dropout

dropout

dropout

Variational Auto-encoder (VAE)

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

VAE - Summary

Source: https://gregorygundersen.com/blog/2018/04/29/reparameterization/

https://arxiv.org/pdf/1610.00291.pdf

After Break: Diffusion Models (optional)

Diffusion Probabilistic Models

ICLR 2015

The essential idea, inspired by non-equilibrium statistical physics, is to
Ø systematically and slowly destroy structure in a data distribution through an iterative forward diffusion

process.
Ø learn a reverse diffusion process that restores structure in data, yielding a highly flexible and tractable

generative model of the data.
https://arxiv.org/abs/1503.03585

Motivation: Estimating small
perturbations is more tractable
than explicitly describing the full
distribution.

https://www.youtube.com/watch?v=XCUlnHP1TNM

https://arxiv.org/abs/1503.03585
https://www.youtube.com/watch?v=XCUlnHP1TNM

Denoising Diffusion Probabilistic Model (DDPM)

https://github.com/hojonathanho/diffusion

Demonstrate that diffusion models are
capable of generating high quality samples.

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

https://github.com/hojonathanho/diffusion

Denoising Diffusion Probabilistic Model (DDPM)

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

How are these formulas derived?

Reverse denoising process: learns to generate data by denoising

Forward diffusion process: gradually adds noise to input image

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

!(#!|#!"#)

!(#!"#|#!) ≈ '$(#!"#|#!)

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Forward Process !(#!|#!"#)
#%~! # #&

Fixed, no trainable parameters

Q: How to obtain !) at any arbitrary time step "?

#!

Reparameterization trick
A way to sample data x from !(#, %!)
• Sample z from !(0,1)
•) = # + %,

Def:

*% = 10"', *& = 0.02

Denoising Diffusion Probabilistic Model (DDPM)

Denoising Diffusion Probabilistic Model (DDPM) (optional)

DDPM: An alternative way to derive the loss

Jensen
inequality

Separate case
t=1

Bayes’ Rule

Monster
comes…

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Reverse Process

!1 !)23 !) !4

U-NetU-NetU-Net

6̃&6̃!6̃!"#

……

!- = #$-!. + 1− #$-(-

!. =
1
#$-
(!- − 1− #$-(-) One step can recover !.!

Why don’t we use it?

Reverse process: (!-, (̃) → !-/0

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: #! → #$

!- = #$-!. + 1− #$-(-

!. =
1
#$-
(!- − 1− #$-(-)

One step can recover !.!
Why don’t we use it?

Reverse process: (!-, (̃) → !-/0

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Reverse Process !(#!"#|#!)
Reverse denoising process: learns to generate data by denoising !(#!"#|#!) ≈ '$(#!"#|#!)

Q2: How to estimate the true reverse process #(!)23|!))?

#%~! # #&

Remark 1. If the variance is small enough during forward process, # !)23 !) will be Gaussian as
well.
Remark 2. The reverse conditional probability # !)23 !) is intractable, but # !)23 !) , !1 would
be tractable.

Reminder: Gaussian pdf: (!; *, +8 =
3
89: exp −

;2< 1

8:1

Denoising Diffusion Probabilistic Model (DDPM) (optional)

DDPM: Reverse Process !(#!"#|#!)
Q3: How to obtain the mean and variance of # !)23 !) ?

Denoising Diffusion Probabilistic Model (DDPM) (optional)

DDPM: Reverse Process !(#!"#|#!)

Following the standard Gaussian density function, the mean and variance can be parameterized
as follows

Q3: How to obtain the mean and variance of # !) !)23 ?

Variance: >*! = #
(

Mean: ?@(#!, #%) = −)
*(

?@! =
1
B!

#! −
*!
1 − B!

6!
Absorb #% by substituting it with

#% =
1
B!
(#! − 1 − B!6!)

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Reverse Process !(#!"#|#!)

!)23 !) ~(
1
3)

!) −
4)
1 − 53)

6) ,
1 − 78)23
1 − 78)

4)9

!)23 =
1
8)

!) −
4)
1 − 8)

6) ++6 6~(0, 9 , 6) ≈ 6̃ = >(?"(!) , ")

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Summary
Forward Reverse @C2D~A(B, CE)

!)|!)23 = ((!); 1 − 4)!)23, 4)9)

!) !1 = ((!); 78)!1, 1 − 78) 9)

!) = 78)!1 + 1− 78) z,	z~N(0,1)

6̃ = >(?"(!) , ")

GHII(6, 6̃)

. !-/0|!- → . !-/0|!-, !. → 2 !- !-/0 2(3+,-|3.)
2(3+|3.) →derive

mean and variance

. !-/0 !- = 0 1
1- !- −

2-
1− 31-

(- , 1 − #$-/0
1− #$- 2-4

!)23 =
1
8)

!) −
4)
1 − 78)

6) ++6

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Sample Quality

We find that training our models on the true variational bound yields better codelengths than training on the
simplified objective, as expected, but the latter yields the best sample quality.

Denoising Diffusion Probabilistic Model (DDPM)

DDPM: Progressive generation

Large scale image features appear first and details appear last.

Demo Time: Stable Diffusion

https://stablediffusionweb.com/

https://stablediffusionweb.com/

(last lecture)
(this lecture)

Variational Auto-encoder (this lecture)
Diffusion models (this lecture)

Graph Neural Networks (GNN)

The missing piece

Tabular data : Linear Models, MLP

Imaging data : CNN, Vision Transformer

Sequence data (e.g., Language, speech): CNN, RNN,
Transformer

What about graph data?

What is a graph?

Source: Minji Yoon, CMU

What is a graph?

Source: Minji Yoon, CMU

Graph is everywhere!

Graph Neural Networks (GNN) is everywhere

What is GNN? – Problem Setup

undirected unweighted graph

Source: Minji Yoon, CMU

What is GNN? – Problem Setup

Source: Minji Yoon, CMU

What is GNN? – Problem Setup

Source: Minji Yoon, CMU

What is GNN? – Problem Setup

Source: Minji Yoon, CMU

What is GNN? – Problem Setup

Source: Minji Yoon, CMU

What is GNN? – Problem Setup

Source: Minji Yoon, CMU

What is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesWhat is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architectures

1.

What is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesWhat is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesWhat is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesWhat is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesWhat is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesWhat is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architectures

1-layer MLP is
commonly used

What is GNN? – Forward propagation

Source: Minji Yoon, CMU

What is GNN? – architecturesGraph Convolutional Network (GCN)

+

What is GNN? – architecturesGraph Convolutional Network (GCN)

Can we use batch-mode?

B= 3

What is GNN? – architecturesGraph Convolutional Network (GCN)

B= 3

What is GNN? – architecturesGraph Convolutional Network (GCN)

B= 3

What is GNN? – architecturesGraph Convolutional Network (GCN)

B= 3

What is GNN? – architecturesGraph Convolutional Network (GCN)

Assume A is the affinity matrix

Graph Convolutional Network (GCN)

1
1

1
1

1
1Normalized Graph Laplacian

What is GNN? – architecturesGraph Convolutional Network (GCN) -- Summary

Image Credit: Defferrard et al. NIPS 2016

What is GNN? – architecturesGraph Convolutional Network (GCN) -- Summary

Image Credit: Defferrard et al. NIPS 2016

Published as a conference paper at ICLR 2017

In this way, we can still recover a rich class of convolutional filter functions by stacking multiple
such layers, but we are not limited to the explicit parameterization given by, e.g., the Chebyshev
polynomials. We intuitively expect that such a model can alleviate the problem of overfitting on
local neighborhood structures for graphs with very wide node degree distributions, such as social
networks, citation networks, knowledge graphs and many other real-world graph datasets. Addition-
ally, for a fixed computational budget, this layer-wise linear formulation allows us to build deeper
models, a practice that is known to improve modeling capacity on a number of domains (He et al.,
2016).

In this linear formulation of a GCN we further approximate �max ⇡ 2, as we can expect that neural
network parameters will adapt to this change in scale during training. Under these approximations
Eq. 5 simplifies to:

g✓0 ? x ⇡ ✓
0
0x+ ✓

0
1 (L� IN)x = ✓

0
0x� ✓

0
1D

� 1
2AD

� 1
2x , (6)

with two free parameters ✓
0
0 and ✓

0
1. The filter parameters can be shared over the whole graph.

Successive application of filters of this form then effectively convolve the kth-order neighborhood of
a node, where k is the number of successive filtering operations or convolutional layers in the neural
network model.

In practice, it can be beneficial to constrain the number of parameters further to address overfitting
and to minimize the number of operations (such as matrix multiplications) per layer. This leaves us
with the following expression:

g✓ ? x ⇡ ✓

⇣
IN +D

� 1
2AD

� 1
2

⌘
x , (7)

with a single parameter ✓ = ✓
0
0 = �✓

0
1. Note that IN + D

� 1
2AD

� 1
2 now has eigenvalues in

the range [0, 2]. Repeated application of this operator can therefore lead to numerical instabilities
and exploding/vanishing gradients when used in a deep neural network model. To alleviate this
problem, we introduce the following renormalization trick: IN +D

� 1
2AD

� 1
2 ! D̃

� 1
2 ÃD̃

� 1
2 , with

Ã = A+ IN and D̃ii =
P

j
Ãij .

We can generalize this definition to a signal X 2 RN⇥C with C input channels (i.e. a C-dimensional
feature vector for every node) and F filters or feature maps as follows:

Z = D̃
� 1

2 ÃD̃
� 1

2X⇥ , (8)

where ⇥ 2 RC⇥F is now a matrix of filter parameters and Z 2 RN⇥F is the convolved signal
matrix. This filtering operation has complexity O(|E|FC), as ÃX can be efficiently implemented
as a product of a sparse matrix with a dense matrix.

3 SEMI-SUPERVISED NODE CLASSIFICATION

Having introduced a simple, yet flexible model f(X,A) for efficient information propagation on
graphs, we can return to the problem of semi-supervised node classification. As outlined in the in-
troduction, we can relax certain assumptions typically made in graph-based semi-supervised learn-
ing by conditioning our model f(X,A) both on the data X and on the adjacency matrix A of the
underlying graph structure. We expect this setting to be especially powerful in scenarios where the
adjacency matrix contains information not present in the data X , such as citation links between doc-
uments in a citation network or relations in a knowledge graph. The overall model, a multi-layer
GCN for semi-supervised learning, is schematically depicted in Figure 1.

3.1 EXAMPLE

In the following, we consider a two-layer GCN for semi-supervised node classification on a graph
with a symmetric adjacency matrix A (binary or weighted). We first calculate Â = D̃

� 1
2 ÃD̃

� 1
2 in

a pre-processing step. Our forward model then takes the simple form:

Z = f(X,A) = softmax
⇣
Â ReLU

⇣
ÂXW

(0)
⌘
W

(1)
⌘
. (9)

3

What is GNN? – architecturesGraph Convolutional Network (GCN) -- Summary

Image Credit: Defferrard et al. NIPS 2016

Published as a conference paper at ICLR 2017

In this way, we can still recover a rich class of convolutional filter functions by stacking multiple
such layers, but we are not limited to the explicit parameterization given by, e.g., the Chebyshev
polynomials. We intuitively expect that such a model can alleviate the problem of overfitting on
local neighborhood structures for graphs with very wide node degree distributions, such as social
networks, citation networks, knowledge graphs and many other real-world graph datasets. Addition-
ally, for a fixed computational budget, this layer-wise linear formulation allows us to build deeper
models, a practice that is known to improve modeling capacity on a number of domains (He et al.,
2016).

In this linear formulation of a GCN we further approximate �max ⇡ 2, as we can expect that neural
network parameters will adapt to this change in scale during training. Under these approximations
Eq. 5 simplifies to:

g✓0 ? x ⇡ ✓
0
0x+ ✓

0
1 (L� IN)x = ✓

0
0x� ✓

0
1D

� 1
2AD

� 1
2x , (6)

with two free parameters ✓
0
0 and ✓

0
1. The filter parameters can be shared over the whole graph.

Successive application of filters of this form then effectively convolve the kth-order neighborhood of
a node, where k is the number of successive filtering operations or convolutional layers in the neural
network model.

In practice, it can be beneficial to constrain the number of parameters further to address overfitting
and to minimize the number of operations (such as matrix multiplications) per layer. This leaves us
with the following expression:

g✓ ? x ⇡ ✓

⇣
IN +D

� 1
2AD

� 1
2

⌘
x , (7)

with a single parameter ✓ = ✓
0
0 = �✓

0
1. Note that IN + D

� 1
2AD

� 1
2 now has eigenvalues in

the range [0, 2]. Repeated application of this operator can therefore lead to numerical instabilities
and exploding/vanishing gradients when used in a deep neural network model. To alleviate this
problem, we introduce the following renormalization trick: IN +D

� 1
2AD

� 1
2 ! D̃

� 1
2 ÃD̃

� 1
2 , with

Ã = A+ IN and D̃ii =
P

j
Ãij .

We can generalize this definition to a signal X 2 RN⇥C with C input channels (i.e. a C-dimensional
feature vector for every node) and F filters or feature maps as follows:

Z = D̃
� 1

2 ÃD̃
� 1

2X⇥ , (8)

where ⇥ 2 RC⇥F is now a matrix of filter parameters and Z 2 RN⇥F is the convolved signal
matrix. This filtering operation has complexity O(|E|FC), as ÃX can be efficiently implemented
as a product of a sparse matrix with a dense matrix.

3 SEMI-SUPERVISED NODE CLASSIFICATION

Having introduced a simple, yet flexible model f(X,A) for efficient information propagation on
graphs, we can return to the problem of semi-supervised node classification. As outlined in the in-
troduction, we can relax certain assumptions typically made in graph-based semi-supervised learn-
ing by conditioning our model f(X,A) both on the data X and on the adjacency matrix A of the
underlying graph structure. We expect this setting to be especially powerful in scenarios where the
adjacency matrix contains information not present in the data X , such as citation links between doc-
uments in a citation network or relations in a knowledge graph. The overall model, a multi-layer
GCN for semi-supervised learning, is schematically depicted in Figure 1.

3.1 EXAMPLE

In the following, we consider a two-layer GCN for semi-supervised node classification on a graph
with a symmetric adjacency matrix A (binary or weighted). We first calculate Â = D̃

� 1
2 ÃD̃

� 1
2 in

a pre-processing step. Our forward model then takes the simple form:

Z = f(X,A) = softmax
⇣
Â ReLU

⇣
ÂXW

(0)
⌘
W

(1)
⌘
. (9)

3

What is GNN? – architecturesGraph Attention Network (optional)

What is GNN? – architecturesHow to Train GNN?

What is GNN? – architecturesHow to Train GNN?

Still an active research topic!

What is GNN? – architecturesTwo interesting questions about GNN

Question 1: Width?

Source: Minji Yoon, CMU

What is GNN? – architectures

Question 2: Depth?

Two interesting questions about GNN

Source: Minji Yoon, CMU

What is GNN? – architecturesTwo interesting questions about GNN

Question 1: Width?

Source: Minji Yoon, CMU

What is GNN? – architecturesTwo interesting questions about GNN

Question 1: Width?

Source: Minji Yoon, CMU

What is GNN? – architecturesTwo interesting questions about GNN

Question 1: Width?

Source: Minji Yoon, CMU

What is GNN? – architecturesTwo interesting questions about GNN

Question 1: Width?

Source: Minji Yoon, CMU

What is GNN? – architectures

Question 2: Depth?

Two interesting questions about GNN

Source: Minji Yoon, CMU

What is GNN? – architectures

Question 2: Depth?

Two interesting questions about GNN

Source: Minji Yoon, CMU

What is GNN? – architectures

Question 2: Depth?

Two interesting questions about GNN

Source: Minji Yoon, CMU

What is GNN? – architectures

Question 2: Depth?

Two interesting questions about GNN

Source: Minji Yoon, CMU

What is GNN? – architectures

Question 2: Depth?

Two interesting questions about GNN

Source: Minji Yoon, CMU

GNN Applications

Source: Minji Yoon, CMU

What is GNN? – architecturesGNN applications

Source: Minji Yoon, CMU

What is GNN? – architecturesGNN applications

What is GNN? – architecturesGNN applications

