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Course information

® HW 1is posted! Deadline: Feb 03.

What’s new this year?

What are LLMs good for? We have divided the assignment problems into the following
categories, based on our judgment of how difficult it is to obtain the correct answer using LLMs.

e [Type 1] LLMs can produce almost correct answers from rather straightforward prompts,
e.g., minor modification of the problem statement.

e [Type 2] LLMs can produce partially correct and useful answers, but you may have to use
a more sophisticated prompt (e.g., break down the problem into smaller pieces, then ask a
sequence of questions), and also generate multiple times and pick the most reasonable output.

e [Type 3] LLMs usually do not give the correct answer unless you try hard. This may
include problems with involved mathematical reasoning or numerical computation (many
GPT models do not have a built-in calculator).

e [Type 4] LLMs are not suitable for the problem (e.g., graph/figure-related questions).

e Additional TA hours: Wednesday 4-5 pm PT290C
Thursday 11am - noon GatherTown
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Course information

e Final Projects (undergrad and grad students)
e Form a group: 2-3 persons

@ Undergrads can collaborate with grad students

@ Contributions have to be stated in the final report

e Students from different backgrounds are encouraged to form a group
e Proposal

@ One-page summary of the main topics
@ Deadline: TBD

o Final report
tutorial (How to Write a Good Course Project Report , Feb 08)
4 pages (excluding references)

Open review format
Deadline: TBD

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti




What is Artificial Intelligence (Al)?

B WiLL SMITH

|RDBD

&\.
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What is Artificial Intelligence (Al)?
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What makes Al so successful?

Steering: Business

2

ot

Engine:
Algorithms

Wheels :
Computing

A-B-C-D

@ The purpose of this class is to teach you how the Al engine works.
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Recap: Linear Classification and Gradient Descent
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@ Advantages: Easy to understand and implement; Widely-adopted;

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2:  Multilayer Percepti



Limits of Linear Classification

@ Single neurons (linear classifiers) are very limited in expressive power.
@ XOR is a classic example of a function that's not linearly separable.

A
T2

\/

@ There's an elegant proof using convexity.
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Limits of Linear Classification

Convex Sets

o

@ A set § is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,2€S = M +(1-A)x2e€S for0< A< 1.

@ A simple inductive argument shows that for xy, ..., Xy € S, weighted

? 7

averages, or convex combinations, lie within the set:

AMX1+ -+ AIyxy €S for A\; >0, \i+--- Ay =1.
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Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

@ But the intersection can't lie in both half-spaces. Contradiction!
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Limits of Linear Classification

A more troubling example

w110 patternA CmsmTrmmrrrrT) pattern B

Corm rmm w10 pattern A COIrmsiTmmrir) pattern B

T e Pattern A s TrTwemn  pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

Translation Invariance
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Limits of Linear Classification

A more troubling example

O mw w1710 pattern A ComsTmTTTir0)  pattern B

Orrm mm w0 pattern A COoIrmsrrmsrrr0) pattern B

(T mm Pattern A (LI mm) Pattem B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit:= Geoffrey Hinton
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1
P(x)=| x
X1X2

x1 xo | ¢1(x)  da(x) ¢3(x) |t
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)

@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.
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Feature maps

@ We can convert linear models into nonlinear models using feature
maps.

y=w'¢(x)

o Eg.,ify(x)=(1, x, ---,xP)T, then y is a polynomial in x. This
model is known as polynomial regression:

y:W0+W1x+---+WDxD
@ This doesn't require changing the algorithm — just pretend (x) is
the input vector.

@ We don't need an expicit bias term, since it can be absorbed into 1.
@ Feature maps let us fit nonlinear models, but it can be hard to choose
good features.

o Before deep learning, most of the effort in building a practical machine
learning system was feature engineering.

Jimmy Ba and Bo Wang
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Feature maps

Yy = wWp Y =Wy + w1 x
1 _O0—0 M=0 1 00 M=1
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-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : The model is too simple - does not fit the data.

1 o0 M=0

0 L1
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Generalization

@ We would like our models to generalize to data they haven't seen
before

@ The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

@ We can tune hyperparameters using a validation set:

training set Va"g:tt onl test set
train w/ degree 1 > er=7.3
X
train w/ degree 3 > err=1.1 > test err = 1.2
v
train w/ degree 10 > err = 10.5 X
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After the break

After the break: Multilayer Perceptrons
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After the break  Multi-Layer Perceptrons

Source: https://www.youtube.com/watch?v=vyNkAuX290U
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Multilayer Perceptrons

more neurons

IMpUSScamen higher intelligence?

toward cell body

branches
of axon

dendrites

/ axon

nucleus terminals

impulses carried

away from cell body
cell body

Some fun facts :

1 million x

v

100 billion neurons 100,000 neurons
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Multilayer Perceptrons

Impulses carried toward cell body
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axon
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This image by Felipe Perucho

is licensed under CC-BY 3.0
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Multilayer Perceptrons

@ We can connect lots of an output
units together into a ung
directed acyclic graph.

output layer

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles. (We'll
talk about those later.)

second hidden layer

first hidden layer

a hidden
unit
input layer

. . | aconnection
@ Typically, units are
depth an input

grouped together into unit
layers.
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Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

® Recall from softmax regression: this means we | . 2 4 )
need an M x N weight matrix. \ / ‘ \ [/ ‘

@ The output units are a function of the input
units:

y = f(x) = & (Wx +b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!
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Multilayer Perceptrons

Some activation functions:

1 1
1 | -—I— /
/ — — S |
4 3 2 1 0 1 2 3 ]

Linear Hard Threshold Logistic
1 ifz>0 1
y=z Y= 0 ifz<0 A P
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Multilayer Perceptrons

Some activation functions:

e

Rectified Linear Unit

Hyperbolic Tangent

(tanh) (ReLU) Soft RelLU
et —e’” y =logl+ é?
e = 0,
y= y = max(0.2)
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Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

h(1) — f(l)(x)
h(? = F@)(h()y

y = f(L)(h(L—l))
@ Or more simply:

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.
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Feature Learning

@ Neural nets can be viewed as a way of learning features:
y

linear regressor_____ 1

/ clasifier
h? | =9(x)
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Feature Learning

@ Neural nets can be viewed as a way of learning features:

y
linear regressor______ A
/ clasifier
h(2
]
h
Y
X
@ The goal:
-, T
B it
4
+ + +
< /L'l= <
v
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Expressive Power

@ We've seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a
single linear layer.

y = WOWRWwWQ x
Y

@ Deep linear networks are no more expressive than linear regression!
o Linear layers do have their uses — stay tuned!

https://arxiv.org/pdf/1610.00291.pdf
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Expressive Power

@ Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

e Even though RelLU is “almost” linear, it's nonlinear enough!
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Expressive Power

Universality for binary inputs and targets:
@ Hard threshold hidden units, linear output
e Strategy: 2P hidden units, each of which responds to one particular
input configuration

r1 X2 X3 | 1

@ Only requires one hidden layer, though it needs to be extremely wide!
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Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

1 ‘@ 1
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Multilayer Perceptrons

Exercise: Could you come up with another set of weights to compute
XOR?
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Expressive Power

@ What about the logistic activation function?
@ You can approximate a hard threshold by scaling up the weights and

biases:
1.0 - - . . . v . 1.0
08 0.8
06 06
04 04
0.2 0.2
0'0—4 -3 -2 -1 0 1 2 3 4 0'0—4 3 2 1 0 1 2 3 4

y =o(x) y = o(5x)

@ This is good: logistic units are differentiable, so we can tune them
with gradient descent. (Stay tuned!)
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Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
e Really, we desire a compact representation!
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Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.
o If you can learn any function, you'll just overfit.
e Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

o This suggests you might be able to learn compact representations of
some complicated functions

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti



-
After the break

After the break: Backpropagation
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I
After the break Back-Propagation

Source: https://www.youtube.com/watch?v=Suevg-kZdlw
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Overview

@ We've seen that multilayer neural networks are powerful. But how can
we actually learn them?

@ Backpropagation is the central algorithm in this course.

e It's is an algorithm for computing gradients.
o Really it's an instance of reverse mode automatic differentiation,
which is much more broadly applicable than just neural nets.
@ Thisis “just” a clever and efficient use of the Chain Rule for derivatives.
@ We'll see how to implement an automatic differentiation system next
week.
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Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d7 /dw, which is the vector of
partial derivatives.

o This is the average of dL/dw over all the training examples, so in this
lecture we focus on computing dL/dw.
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Recap : Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d
—f
dt

_dr i
dx dt’

(x(1))
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.
Recap: Computation Graph

@ A computational graph is a directed graph where the nodes
correspond to operations or variables.

@ Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

@ For example : we want to plot the operation z = x + y, then

! a
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.
Recap: Computation Graph

@ A computational graph is a directed graph where the nodes
correspond to operations or variables.

@ Variables can feed their value into operations, and operations can
feed their output into other operations. This way, every node in the
graph defines a function of the variables.

@ Another example : we want to plot the operation f = (x+ y)* b, then

'y
v
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A simple example

f(x,y,z)=(x+y)*z &
g=x+y,f=qx*z
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A simple example : Forward Pass

f(x,y,z) =(x+y)xz
g=x+y,f=qx*z
eg,x=—-1y=22z=13
then,q =1,f = —3

ot OF Of of
"Ox’ Oy’ 0z

Wa
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A simple example : Backward Pass

'
(=3

f(x,y,2z) =(x+y)*z
g=x+y,f=qxz

~< L

eg.,.x=-1y=2,z=13
of

af ~ 1

baseline :

.
- v
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A simple example : Backward Pass

f(x,y,z2) =(x+y)*z

g=x+y,f=qxz 1
eg.,.x=-1y=2,z="3 =
of -
baseline : — =1 y
aseline of i
of  Of Of °
— =——=qg=1
9z  ofoz 7 2
(9f_(9f8f_z__3
dg Of0q =
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A simple example : Backward Pass

f(x,y,z2) =(x+y)*z

g=x+y,f=qxz B
eg.,x=-1y=2,z=3 2.
of  Of dq
a—a—qa—(—)*(l)——3 n3
of  0f Oq .
L — 1) = —
dy ~ g0y (=3)«(1)=-3
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A simple example : Backward Pass

A quick summary:

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University
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A simple example : Backward Pass

A quick summary:

“local gradient”

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University
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A simple example : Backward Pass

A quick summary:

“local gradient”

0z

or

\

oL
0z

|®

gradients

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University
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A simple example : Backward Pass

A quick summary:

“local gradient”
S 4 0z

=Y B o

\

oz [eL
Ay 0z
gradients

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University
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A simple example : Backward Pass

A quick summary:

“local gradient”
~y oy 0z

X o =
(93 @2.\3 &v f
0z ) oL
Ay 0z
= :

4 oz Y gradients

Source: Fei-Fei Li & Justin Johnson & Serena Yeung, csc231N, Stanford University
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A more complex example: logistic least squares model

Recall: Univariate logistic least squares model

zZ=wx-+b
y =o0(z2)
1 2
E—z(y t)

Let's compute the loss derivatives.
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Univariate Chain Rule
How you would have done it in calculus class

1
= —(U(W><+b)—t)2 .» f
oc _ 9 [ (o(wx + b) — t)?

oL _ O 1. b db
3w = o |2l@(wx+b) )’ . ,
= Ed—(a(wx+ b) — t)?
= (o(wx + b) — t)%((r(wx + b) — t)
= (o (wx+b)—t)—(cr(wx+b)—t)

= (o(wx + b) — t)o’ (wx + b)(‘;%(wx + b)

0
= (o(wx + b) — t)o’ (wx + b)a—W(WX + b) = (o(wx + b) — t)o’ (wx + b)

= (o(wx + b) — t)o’(wx + b)x
What are the disadvantages of this approach?
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Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss

—_—
t

X

w\z >y>: L

e

Compute Derivatives
-
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I
A more structured way to do it

Compute Loss
S

T t

>~

T S

b
Compute Derivatives
- — e
Computing the derivatives:
Computing the loss: ar
z=wx+b dy
_ de dC
y= 01(2) Z-d° (2)
L= 50—y oL _dc
ow dz
oL _dL
ob  dz
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Univariate Chain Rule

A slightly more convenient notation:

@ Use y to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn’t find another one that | liked

Computing the loss: Computing the derivatives:

z=wx+b y=y—t

y:U(Z) 2:70’/(2)
1 .
L:E(y_t)2 W=2ZXx
b=z
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After the break

After the break: Back-propagation in Multivariate Forms
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e
Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

L>-Regularized regression

T t

=

Z—’y_’ﬁ_’ﬁreg
»R

=wx+ b

=o0(z2)
%(y —t)°
_ L,z

2
£1~eg - C + )\R

D < N
I

K)
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Multiclass logistic regression

w11 D)
blx\
t

332—-22—»:1/2/7
to

w1

ba

w22

zp = E wejX; + by
J

e’k

yk: Zé‘ezﬁ
ﬁz—Ztklogyk
k
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e
Multivariate Chain Rule

@ Suppose we have a function f(x,y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d Of dx  Of dy / \
&f(x(f) (t))_a_X(it+8_yE \ /

e Example:
f(x,y) =y +e¥
x(t) = cost
y(t) =t?
@ Plug in to Chain Rule:

ar _orax  oray
dt  Oxdt Oy dt
= (ye?) - (=sint) + (1 + xe¥) - 2t
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Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df_@fda:+8fdy
dt  Oxdt Oy dt

A >‘t

/\/

Values already computed
by our program

@ In our notation:

H—I
sl

L
d .y
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.
Backpropagation

Full backpropagation algorithm:
Let vq,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori:=1,...,N

forward pass _
Compute v; as a function of Pa(v;)

T UN = 1
backward pass | foré=nN-—1,...,1

Vi = ZjECh(’Ui) Uj ov;
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.
Backpropagation

Full backpropagation algorithm:
Let vq,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori:=1,...,N

forward pass _
Compute v; as a function of Pa(v;)

T UN = 1
backward pass | foré=nN-—1,...,1

Vi = ZjECh(’Ui) Uj ov;
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.
Backpropagation

Multilayer Perceptron (multiple outputs):

(2)

(1) ’
”-‘“ (1) Wiy (2)

oD \\ ) \““\ Backward pass:
' N I t{' ’

Ll —>21—>hj—=1

i 7 =T (e — )
T—Szp—shy—3yy f -
. e I l;,_,_/ T t2 wi = Vi hi
Forward pass: = Z_kW;E,-z)
1 1 k
“ :zj:Wiﬁ. )Xj+b§ ) Z = hio'(z)
hi = o(z) wi) =z
yi=y_ w hi+ b b =z

1 2
L=3 (w—t)
2
k
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Vector Form

@ Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.

w) w2 f\‘

@ We pass messages back analogous to the ones for scalar-valued nodes.
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Vector Form

@ Consider this computation graph:

z Y1
- Y2 Z—y
Z3—>Y3
e Backprop rules:
dyk dy
ze RNy e RM Z=> k== z= 5,
where 0y /0z is the Jacobian matrix (note: check the matrix shapes):

%, o Om
a_ /MxN — : . :
0z m .. OYm

071 0zn
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Vector Form

Examples
@ Matrix-vector product

z—Wx  Z_w  x—w'z
ox
@ Elementwise operations
exp(z1) 0
y = exp(z) 9y _ . Z=-exp(z)oy
0z :
0 exp(zp)

@ Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the Vector Jacobian Product (VJP)

directly.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti



Hessian: Higher-order Gradients

@ Hessian
0%L 0L L 0*L
d,Lf Ox10x2 dx10xy,
oy n° a2
d%L %L L 9°L
H— Oro0x (").’r% Oxo0Tn,
I*L 9L . d*L
Or, 01, 0T, 012 ox?

@ Note: Again, we never explicitly construct the Hessian. It's usually
simpler and more efficient to compute the Vector Hessian Product
(VHP) directly.

@ Note: You will need to practice this in HW1.
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Vector Form

Full backpropagation algorithm (vector form):
Let vyi,...,vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).
It's a scalar, which we can treat as a 1-D vector.

Fori=1,...,N

forward pass .
Compute v; as a function of Pa(v;)

backward pass for i =N —1,...,1

— ov. —
ppp— -1 "
1 Vi = ZjeCh(v,) v, Vi
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Vector Form

MLP example in vectorized form:

W(ii w® f\‘ Backward pass:
/' y=L(y—t)
b(l) b(Z) W(2) — YhT
Forward pass: h2) — y
h=o0(2) Z=ho 0'/(2)
y = W®h 4+ b® WO = zx"
1 Ty —
L=5lt-yl? bl =z
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Computational Cost

@ Computational cost of forward pass: one add-multiply operation per

weight
zi = Z W,.J(.l)xj + bgl)
J
@ Computational cost of backward pass: two add-multiply operations
per weight

wy;) = Vi

hi=Y viw
k

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

@ For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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R
Closing Thoughts

@ Backprop is used to train the overwhelming majority of neural nets today.

@ Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

e No evidence for biological signals analogous to error derivatives.
e All the biologically plausible alternatives we know about learn much

more slowly (on computers).
e So how on earth does the brain learn?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 2: Multilayer Percepti



R
Closing Thoughts

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the
small and to see something in the large.

— Don Knuth

@ By now, we've seen three different ways of looking at gradients:

e Geometric: visualization of gradient in weight space
e Algebraic: mechanics of computing the derivatives
e Implementational: efficient implementation on the computer

@ When thinking about neural nets, it's important to be able to shift
between these different perspectives!
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Look forward beyond BackProp: Forward-Forward Algorithm

The Forward-Forward Algorithm: Some Preliminary
Investigations

Geoffrey Hinton
Google Brain
geoffhinton@google.com

Source: https://www.cs.toronto.edu/~hinton/FFA13.pdf
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