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Course information

@ Second course in machine learning, with a focus on neural networks
e CSC413 is an advanced machine learning course following CSC411 with
an in-depth focus on cutting-edge topics
e Assumes knowledge of basic ML algorithms: linear regression, logistic
regression, maximum likelihood, PCA, EM, etc.
o First 2/3: supervised learning
o Last 1/3: unsupervised learning and reinforcement learning

@ Four sections

e Equivalent content, same assignments and midterms
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Course information

o Formal prerequisites or equivalent in the tri-campus system:

o Multivariable Calculus: MAT235/MAT237/MAT257 /equivalent
o Linear Algebra: MAT221H1/MAT223H1/MAT240H1/equivalent
o Machine Learning: CSC311/STA314/ECE421/ROB313/equivalent

@ Prerequisites will be enforced, including for grad students. See details
on the FAS calendar.

Jimmy Ba and Bo Wang CSC413 Lecture 1: Introduction 3/68



Course information

@ Expectations and marking (undergrads)
o 4 Assignments (60% of total mark)

Due Friday nights at 11:59pm

First homework will be out 1/15, due 2/03

Written part: 2-3 conceptual questions

@ Programming part: 10-15 lines of python code using PyTorch

e Exams
e Midterm quiz (openbook) (10%)
o Final project (30%)
@ See Course Information handout for detailed policies
o Important policy: A minimum of 3 out of 4 assignments must be
submitted on time (with grace days) to pass the course.

o Every student has a total of 7 grace days to extend the coursework
deadlines through the semester.
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Course information

@ Expectations and marking (grad students)
e Same as undergrads:
e Assignments: 60%
o Final project: 40%
@ See Course Information handout for detailed policies
o Waitlists expire ~1 week after the course starts.

o After that, students are responsible for trying to enroll in the course on
ACORN in a first-come, first-serve fashion.
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-
The Good, the Bad and the Ugly

@ This course will be “easy” but there are rules.

o Grace days: every student has a total of 7 grace days to extend the
coursework deadlines through the semester.

o Late penalty: 10% per day up to 3 days. i.e. maximum of 100%,
90%, 80%, 70%, 0% within 72 hours after the deadline.

e Completion requirement: a minimum of 3 out of 4 assignments must
be submitted on time (with grace days) to pass the course.

e Collaboration: individual work except for the final project.

@ Our guarantees to you: this will be one of the most unique learning
experiences at UofT. But, you will have to put in a lot of work.
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Resources and communication

@ A lot of learning in this course happens outside of the classroom.
@ We are fully committed to help you succeed:

e Piazza: main platform for fast, asynchronous, collaborative learning.
o Support ticketing system: default mailing list.

e Office hours: in-person interaction.

o Video lectures: catch up on the missing bits.
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Compute

e Colab (Mandatory) Programming assignments are to be completed
in Google Colab, which is a web-based iPython Notebook service that
has access to a free Nvidia K80 GPU per Google account.

e GCE (Recommended for course projects) Google Compute Engine
delivers virtual machines running in Google's data center.

e OpenAl APl Variety of language models, e.g., GPT-3, ChatGPT,
you will encounter and try out in the course. Recommend register
early and apply for Codex beta access.

@ See Course Information handout for the details
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Course information

Course web page: http://uoft-cscé413.github.io/2023/

Includes detailed course information handout:
https://uoft-csc413.github.io/2023/assets/misc/syllabus.pdf
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Hello world

@ Final project: you must form a group of two or three.
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Hello world

@ Final project: you must form a group of two or three.

@ Now, everyone, please stand up.
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What is machine learning?

@ For many problems, it's difficult to program the correct behavior by
hand

e recognizing people and objects
e understanding human speech from audio files
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What is machine learning?

@ For many problems, it's difficult to program the correct behavior by
hand

e recognizing people and objects
e understanding human speech from audio files

@ Machine learning approach: program an algorithm to automatically
learn from data, or from experience
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What is machine learning?

@ For many problems, it's difficult to program the correct behavior by
hand
e recognizing people and objects
e understanding human speech from audio files
@ Machine learning approach: program an algorithm to automatically
learn from data, or from experience
@ Some reasons you might want to use a learning algorithm:
o hard to code up a solution by hand (e.g. vision, natural language

processing)
e system needs to adapt to a changing environment (e.g. spam detection)
e want the system to perform better than the human programmers

o privacy/fairness (e.g. ranking search results)
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What is machine learning?

@ Types of machine learning

o Supervised learning: have labeled examples of the correct behavior,
i.e. ground truth input/output response

o Reinforcement learning: learning system receives a reward signal,
tries to learn to maximize the reward signal

e Unsupervised learning: no labeled examples — instead, looking for
interesting patterns in the data
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What are neural networks?

@ Most of the biological details aren’t essential, so we use vastly
simplified models of neurons.

@ While neural nets originally drew inspiration from the brain, nowadays
we mostly think about math, statistics, etc.
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@ Neural networks are collections of thousands (or millions) of these
simple processing units that together perform useful computations.
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What are neural networks?

TECHNOLOGY Ehe New York Times m

Turing Award Won by 3
Pioneers in Artificial Intelligence

From lft, Yann LeCun, Geoftrey Hinton and Yoshua Bengio. The rescachers worked on key developrments
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What are neural networks?

Why neural nets?
@ inspiration from the brain
e proof of concept that a neural architecture can see and hear!

o very effective across a range of applications (vision, text, speech,
medicine, robotics, etc.)

@ widely used in both academia and the tech industry

e powerful software frameworks (PyTorch, TensorFlow, etc.) let us
quickly implement sophisticated algorithms
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What are neural networks?

@ Some near-synonyms for neural networks
o “Deep learning”

@ Emphasizes that the algorithms often involve hierarchies with many
stages of processing
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“Deep learning”

Deep learning: many layers (stages) of processing

E.g. this network which recognizes objects in images:

192

dense

Max 128 Max
pooling pooling

3 a8
(Krizhevsky et al., 2012)

128 Max
pooling

204

2048 \dense

dense|

2048

1000

Each of the boxes consists of many neuron-like units similar to the one on

the previous slide!
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“Deep learning”

@ You can visualize what a learned feature is responding to by finding
an image that excites it. (We'll see how to do this.)

@ Higher layers in the network often learn higher-level, more
interpretable representations

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)

https://distill.pub/2017/feature-visualization/
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“Deep learning”

@ You can visualize what a learned feature is responding to by finding
an image that excites it.

o Higher layers in the network often learn higher-level, more
interpretable representations

By

898 Rl

Parts (layers mixed4b &

mixeddc) Objects (layers mixeddd & mixed4e)

https://distill.pub/2017/feature-visualization/
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What is a representation?

@ How you represent your data determines what questions are easy to

answer.
e E.g. a dict of word counts is good for questions like “What is the most

common word in Hamlet?"
e It's not so good for semantic questions like “if Alice liked Harry Potter,

will she like The Hunger Games?"
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What is a representation?

Idea:

represent words as vectors
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What is a representation?

@ Mathematical relationships between vectors encode semantic
relationships between words

e Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)

o Represent a web page with the average of its word vectors

o Complete analogies by doing arithmetic on word vectors

@ e.g. “Paris is to France as London is to
o France — Paris 4+ London =
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What is a representation?

@ Mathematical relationships between vectors encode semantic
relationships between words

e Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)

o Represent a web page with the average of its word vectors

o Complete analogies by doing arithmetic on word vectors

@ e.g. “Paris is to France as London is to
o France — Paris 4+ London =

@ It's very hard to construct representations like these by hand, so we
need to learn them from data

e This is a big part of what neural nets do, whether it's supervised,
unsupervised, or reinforcement learning!
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Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset
@ Task: given an image of a handwritten digit, predict the digit class

o Input: the image
e Target: the digit class
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Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset
@ Task: given an image of a handwritten digit, predict the digit class
o Input: the image
e Target: the digit class
e Data: 70,000 images of handwritten digits labeled by humans

e Training set: first 60,000 images, used to train the network
o Test set: last 10,000 images, not available during training, used to
evaluate performance
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Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset
@ Task: given an image of a handwritten digit, predict the digit class
o Input: the image
e Target: the digit class
e Data: 70,000 images of handwritten digits labeled by humans

e Training set: first 60,000 images, used to train the network
o Test set: last 10,000 images, not available during training, used to
evaluate performance

@ This dataset is the “fruit fly” of neural net research

@ Neural nets already achieved > 99% accuracy in the 1990s, but we
still continue to learn a lot from it
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Supervised learning examples

What makes a “2"?
ocldwli N (/A2
o232 2|5>7
3679149474659
Ll 72N 714279
b8 78 49497
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Supervised learning examples

Object recognition

snowplow scabbard

otter snowplow earthworm
quail drilling platform guillotine
ruffed grouse lifeboat orangutan l

partridge garbage truck broom ||

50% 50% 50%

(Krizhevsky and Hinton, 2012)

ImageNet dataset: thousands of categories, millions of labeled images
Lots of variability in viewpoint, lighting, etc.
Error rate dropped from 26% to under 4% over the course of a few years!
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Supervised learning examples

Caption generation

Vision Language
Deep CNN Generating RNN
o. A group of people
~ shopping at an outdoor
o market.
—
o There are many
s vegetables at the
L4 Fruit stand

A woman s throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a

mountain in the background
(Xu et al., 2015)

Given: dataset of Flickr images with captions

More examples at http://deeplearning.cs.toronto.edu/i2t
CSC413 Lecture 1: Introduction
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Supervised learning examples

Neural Machine Translation

Encoder LSTMs

_~" bgtoder LsTH . _

Geug

siaers

Geu3

cpuz

GPuz

GPur

(Wu et al., 2016)

-@

chus

Gpu3

GPuz

Gpur

Input sentence:

Translation (PBMT):

Translation (GNMT):

FresaLLITAT IR0
MR RN, B
MEAEIBHE ST
MEAEERERY

.

Li Kegiang premier
added this line to start
the annual dialogue
mechanism with the
Canadian Prime Minister
Trudeau two prime
ministers held its first
annual session.

Li Kegiang will start the
annual dialogue
mechanism with Prime
Minister Trudeau of
Canada and hold the first
annual dialogue between
the two premiers.

Now the production model on Google Translate

Jimmy Ba and Bo Wang
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Unsupervised learning examples

@ In generative modeling, we want to learn a distribution over some dataset,
such as natural images.

@ We can evaluate a generative model by sampling from the model and seeing
if it looks like the data.

@ These results were considered impressive in 2014:

Denton et al., 2014, Deep generative image models using a Laplacian, pyramid of adversarial-networks
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Unsupervised learning examples

Odena et al
2016

Miyato et al
2017

Zhang et al
2018
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Unsupervised learning examples

@ The progress of generative models:
@ Stable Diffusion, Robini et al, 2022:
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Unsupervised learning examples

@ The progress of generative models:
@ DreamStudio, Stability Al:

Y :
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Unsupervised learning examples

@ Generative models of text. The models like BERT and GPT-2
perform unsupervised learning by reconstructing the next words in a
sentence. The GPT-2 model learns from 40GB of Internet text.

Custom prompt -

100k CSC413 introduction to deep learning last year

GENERATE ANOTHER

Completion

BERT OpenAl GPT 1took CSC413 introduction to deep learning last year, and this year | know |
want to make that course (course 2, actually) a real staple in my curriculum.
The lecture style is intimidating at first, but after a few weeks | got really into
it. CSC413 is not only thorough and delivers valuable practical material, but
the lecturers always make a point of going out of their way to focus on
presenting real world challenges you can encounter while solving deep
learning algorithms. At the end of the semester, the final project that | was
given was something completely out of my class that | had to develop myself,
and that was a fascinating final project project. On a completely unrelated
note, this weekend, | went and hit up Google for X.org and Autodesk and let

https://talktotransformer.com/
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Unsupervised learning examples

@ The GPT-3 models now are learning from 2TB of Internet text.

Similar models are helping with code generation.
®

write a matplotlib function to make a line plot on data=[32e3,254e5,255€7)
date=["2018", "2020", "2022"] where the x axis label is replaced by strings in the

date list. Make sure the y axis labels are displayed in millions.

Playground
pre
e § VEweh §f ise § oo § G Here's an example of a function that takes in a list of data points and a
corresponding list of dates, and creates a line plot with the x-axis labels replaced
by the date strings:
Write a short poem about introduction to deep learning ) Copy code

and neural networks in lord's prayer style.
matplotlib.pyplot as plt

Our Father in deep learning, (data, dates):
Hallowed be thy name.
Thy algorithm come, fig, ax = plt.subplotsQ)

Thy neural networks be done,

On deep learning as it is in heaven.
Give us this day our daily data, ax.set_xticks(range(len(dates)))
And forgive us our model errors, ax.set_xticklabels(dates)

As we forgive those who train against us.
And lead us not into overfitting,

But deliver us from underfitting. ax.yaxis.set_major_formatter(plt.ScalarFormatter(useMathText=True))
For thine is the power, ax.yaxis.offsetText.set_fontsize(10)
ax.yaxis.set_major_formatter(plt. FuncFormatter(

(€&))

ax.plot(data)

The accuracy, and the glory,
Forever and ever. Amen.

ax.set_xlabel(
ax. set_ylabel(

Jimmy Ba and Bo Wa CSC413 Lecture 1: Introduction
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Reinforcement learning

An agent interacts with an environment (e.g. game of Breakout)

In each time step,
o the agent receives observations (e.g. pixels) which give it information
about the state (e.g. positions of the ball and paddle)
o the agent picks an action (e.g. keystrokes) which affects the state

The agent periodically receives a reward (e.g. points)

@ The agent wants to learn a policy, or mapping from observations to
actions, which maximizes its average reward over time
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Reinforcement learning

DeepMind trained neural networks to play many different Atari games
@ given the raw screen as input, plus the score as a reward
@ single network architecture shared between all the games

@ in many cases, the networks learned to play better than humans (in
terms of points in the first minute)

https://www.youtube.com/watch?v=V1eYniJORnk
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Reinforcement learning for control

Learning locomotion control from scratch
@ The reward is to run as far as possible over all the obstacles
@ single control policy that learns to adapt to different terrains
https://www.youtube.com/watch?v=hx_bgoTF7bs
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Software frameworks

e Scientific computing (NumPy)
e vectorize computations (express them in terms of matrix/vector
operations) to exploit hardware efficiency
@ Neural net frameworks: PyTorch, TensorFlow, etc.
automatic differentiation
e compiling computation graphs
o libraries of algorithms and network primitives
e support for graphics processing units (GPUs)

@ For this course:

e Python, NumPy
e PyTorch, a widely used neural net framework with a built-in automatic
differentiation feature

Jimmy Ba and Bo Wang CSC413 Lecture 1: Introduction 37/68



Software frameworks

Why take this class, if PyTorch does so much for you?

So you know what do to if something goes wrong!

@ Debugging learning algorithms requires sophisticated detective work,
which requires understanding what goes on beneath the hood.

@ That's why we derive things by hand in this class!
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N
After break

Linear models
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Overview

@ One of the fundamental building blocks in deep learning are the linear
models, where you decide based on a linear function of the input
vector.

@ Here, we will review linear models, some other fundamental concepts
(e.g. gradient descent, generalization), and some of the common
supervised learning problems:

o Regression: predict a scalar-valued target (e.g. stock price)

e Binary classification: predict a binary label (e.g. spam vs. non-spam
email)

o Multiway classification: predict a discrete label (e.g. object category,
from a list)
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|
Problem Setup

4.0
35
3.0 o o°

25

15
1.0

0.5

0.0

@ Want to predict a scalar t as a function of a vector x
o Given a dataset of pairs {(x(), t())}NV

o The x() are called input vectors, and the t() are called targets.
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|
Problem Setup

Data space Weight space
4.0 3.0
35 - 25
3.0 '/"// 2.0
25 s I .
— >§
>2.0 //-/ . /g/ro’ °
15 o - 05
1.0 -~ <\ 0.0
|
05 o5  T———
0.0 1 2 3 4 _1910 -0.5 0.0 0.5 1.0 15 2.0
X w

Model: y is a linear function of x:
y= w ' x +b
@ y is the prediction
@ w is the weight vector
@ b is the bias
@ w and b together are the parameters
@ Settings of the parameters are called hypotheses
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|
Problem Setup

o Loss function: squared error

£l 1) = 50— 1)

@ y — t is the residual, and we want to make this small in magnitude

o The % factor is just to make the calculations convenient.
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|
Problem Setup

o Loss function: squared error

£l 1) = 50— 1)

@ y — t is the residual, and we want to make this small in magnitude
o The % factor is just to make the calculations convenient.
@ Cost function: loss function averaged over all training examples
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|
Problem Setup

Visualizing the contours of the cost function:

4.0

3.0

35 P 2.
>~
3.0 . 2 2.
o
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-

>2.0 o . a 1.
15 - o.
1.0 0.

0.5 -0.5

5 0.0 0.5 1.0 15 2
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n

=)

n

=)

n

=)

. -1.0
0 OU 1 2 3 4 5 -1.0 -0.

.0
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Vectorization

@ We can organize all the training examples into a matrix X with one
row per training example, and all the targets into a vector t.

one feature across
all training examples

xT 80| 3 0 .
X=|x®@T| =16 -1 5 3 exgrr:wepfcraa(lcgc]:%or)
x(3)T 25| -2 8

@ Computing the predictions for the whole dataset:

WTx(l) _|_ b y(l)
Xw + bl = : = 5 =y
WTx(N) _|_ b y(N)
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Vectorization

@ Computing the squared error cost across the whole dataset:
y = Xw + bl
J = 7||y —t|?

@ In Python:

y = np.dot(X, w) + b
cost = np.sum((y - £) ** 2) /(2. * N)
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Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: the minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the partial
derivatives are all 0.

@ Two strategies for optimization:

o Direct solution: derive a formula that sets the partial derivatives to 0.
This works only in a handful of cases (e.g. linear regression).

o lterative methods (e.g. gradient descent): repeatedly apply an update
rule which slightly improves the current solution. This is what we'll do
throughout the course.
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Direct solution

@ Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

f(x1 4+ h,x2) — f(x1,x2)
h

—f =1
Ox1 (3, %) Pt

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

Oy
= ! ! b
o, aw, |:Zw Xjr + :|

=

dy

% ab |:ZW/X/+b:|

=1
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N
Direct solution

@ Chain rule for derivatives:

oL _dL oy

8W_,-_dy8vvj-
7d 1 2
~a ls0-7
=(y — t)x;

9L _ 4

ab 7

o We will give a more precise statement of the Chain Rule next week.
It's actually pretty complicated.
o Cost derivatives (average over data points):

8T 1, iy

%:Nz(y(),t()))ﬁ()
i=1

o7 1

N
_ist 00
6b_N§y t
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Gradient descent

o Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

@ The gradient descent update decreases the cost function for small

enough a:
0T
Wj < W 04870_
N
—w; — S50 — 0y XD
J N y ]

i=1

@ « is a learning rate. The larger it is, the faster w changes.

o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001
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Gradient descent

@ This gets its name from the gradient:

gij
N "

VI (w) = ow :
b

o This is the direction of fastest increase in J.

51/68
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Gradient descent

@ This gets its name from the gradient:

gij
N "

VI (w) = ow :
b

o This is the direction of fastest increase in J.
@ Update rule in vector form:
w—w—aVJ(w)

@ Hence, gradient descent updates the weights in the direction of

fastest decrease.
51/68
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/1lec/W01/linear_
regression.pdf#page=21
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
o GD can be applied to a much broader set of models
o GD can be easier to implement than direct solutions, especially with
automatic differentiation software
o For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3?) algorithm).
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Feature maps

@ We can convert linear models into nonlinear models using feature
maps.
T
y=w 9(x)
o Eg., ify(x)=(1, x, ---,xP)T, then y is a polynomial in x. This
model is known as polynomial regression:

y= Wo—|—wlx+---—|—WDxD

@ This doesn’t require changing the algorithm — just pretend (x) is
the input vector.

@ We don’t need an expicit bias term, since it can be absorbed into .

@ Feature maps let us fit nonlinear models, but it can be hard to choose
good features.

o Before deep learning, most of the effort in building a practical machine
learning system was feature engineering.

Jimmy Ba and Bo Wang CSC413 Lecture 1: Introduction 54 /68



Feature maps

y =W Yy = wo + wix

1 M=0
o
t
° o

0 1 0 1

x x

3 9

2
Y = Wo + WiX + wax® + w3Xx

0 . 1 0 1

x x

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : The model is too simple - does not fit the data.

1 00 M=0

0 . 1

-1
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Generalization

@ We would like our models to generalize to data they haven't seen
before

@ The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

@ We can tune hyperparameters using a validation set:

validation

- I test set

‘ training set I

’ train w/ degree 1 ’—»‘ err=7.3 ‘ x
’ train w/ degree 3 ’——{ err=1.1 ’\/—»
‘ train w/ degree 10 ’——{ err=10.5 ‘ x
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Classification

Binary linear classification

o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}
e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

@ linear: model is a linear function of x, thresholded at zero:
z=w'x+b

tout = 1 ifz>0
OWPUL =190 ifz <0
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Logistic Regression

@ We can’t optimize classification accuracy directly with gradient
descent because it's discontinuous.

@ Instead, we typically define a continuous surrogate loss function which
is easier to optimize. Logistic regression is a canonical example of
this, in the context of classification.

@ The model outputs a continuous value y € [0, 1], which you can think
of as the probability of the example being positive.
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-
Logistic Regression

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or 0

S-shaped, function: o
1 .
o(z) = 1+e2 0

@ A linear model with a logistic nonlinearity is known as log-linear:
z=w'x+b
y =o0(2)

@ Used in this way, o is called an activation function, and z is called the
logit.
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Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ Being 99% confident of the wrong answer is much worse than being
90% confident of the wrong answer. Cross-entropy loss captures this

intuition:
5
m4
[ —logy ift=1 £
Lerly,t) = { —log(l—y) ift=0 & \uy =0
= —tlogy — (1 —t)log(1 - y) 2
1
8A0 0.2 0.4 0.6 0.8 1.0
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Logistic Regression

o Logistic regression combines the logistic activation function with
cross-entropy loss.

— logistic + CE

z=w x4+ b
y =o0(z)
_ 1
C14e2
Lcg = —tlogy — (1 —t)log(l —y)

@ Interestingly, the loss asymptotes to a linear function of the logit z.
@ Full derivation in the readings.
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N
Multiclass Classification

@ What about classification tasks with more than two categories?

puzen 1233

26294970659

sz )N 71239

8378409497
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Multiclass Classification

o Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

-~
entry k is 1
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Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:

Zy = Z Wi Xj + by

@ Vectorized:
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Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

ek

yk = softmax(zy, ..., zx)k = T
k/

@ The inputs z, are called the logits.
@ Properties:

e Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)

o If one of the z's is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)

o Exercise: how does the case of K = 2 relate to the logistic function?

e Note: sometimes o(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.
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Multiclass Classification

@ If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Len(y,t) == tilogyi
k=1

= —t' (logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

@ Softmax regression, also called multiclass logistic regression:

z=Wx-+b

y = softmax(z)

Lop = —t' (logy)

@ It's possible to show the gradient descent updates have a convenient

form:
OLce

0z

y—t
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