
CSC413/2516 Lecture 9:
Large Language Models

and GANs

Jimmy Ba and Bo Wang

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 1 / 55

Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, 8 and this lecture)

Generative adversarial networks (this lecture)

Diffusion models (next lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 2 / 55

Transformers is all you need

We have seen transformers in the previous lectures.

In this lecture, we will take a look at how to scale up transformers to
billions of parameters in models like ChatGPT.

Model architectures
Data and model parallelism

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 3 / 55

Model architectures

The basic building block of generative pretrained transformer (GPT):

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 4 / 55

Model architectures

Counting the number of parameters in a building block:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 5 / 55

Model architectures

The total number of parameters in a building block ≈ 12emb2

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 6 / 55

Model architectures

The basic building block of generative pretrained transformer (GPT):

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 7 / 55

Model architectures

How many parameters in a GPT model with L layers and H emb size?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 8 / 55

Model architectures

Training data size v.s. model size in the recent GPT-like models:

Are the models under trained or over trained?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 9 / 55

Data and Model Parallelism

Matrix multiplication is the most basic operation in deep learning:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 10 / 55

Data and Model Parallelism

Naive data parallelism is the most common approach to utilize many
parallel compute:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 11 / 55

Data and Model Parallelism

The communication cost in the naive data parallelism ≈ 2|W |, why?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 12 / 55

Data and Model Parallelism

Model parallelism is similar to data parallelism just on another axis:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 13 / 55

Data and Model Parallelism

Example:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 14 / 55

Data and Model Parallelism

Example:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 15 / 55

Data and Model Parallelism

Example:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 16 / 55

Data and Model Parallelism

Example:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 17 / 55

Fully Sharded Data Parallelism

Is it possible to reduce redundancy?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 18 / 55

Fully Sharded Data Parallelism

We will now try to reconstruct our weight matrix before computing
activations. Why is this better?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 19 / 55

Fully Sharded Data Parallelism

Let us consider two consecutive matrix multiplications

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 20 / 55

Fully Sharded Data Parallelism

What is the peak memory usage? Peak memory = activations

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 21 / 55

Fully Sharded Data Parallelism

What is the peak memory usage? Peak memory = |W 1|+ |W 2|/2 + act.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 22 / 55

Fully Sharded Data Parallelism

What is the peak memory usage? Peak memory = |W 1|/2 + |W 2|+ act.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 23 / 55

Fully Sharded Data Parallelism

What is the peak memory usage?
Peak memory = max{|W 1|, |W 2|}/2 + |W 1|/2 + |W 2|/2 + act.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 24 / 55

Fully Sharded Data Parallelism

Communication cost ≈ 3|W | (once forward and twice backward). A
trade-off between peak memory and communication.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 25 / 55

Data and Model Parallelism

Which strategy shall we use?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 26 / 55

Fully Sharded Data and Model Parallelism

Example:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 27 / 55

After the break

After the break: Other generative models

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 28 / 55

Overview

In generative modeling, we’d like to train a network that models a
distribution, such as a distribution over images.

One way to judge the quality of the model is to sample from it.

This field has seen rapid progress:

2009 2015
2018

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 29 / 55

Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, 8 and this lecture)

Generative adversarial networks (this lecture)

Diffusion models (next lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 30 / 55

Generator Networks

Autoregressive models explicitly predict a distribution at each step.

Another approach to generative modeling is to train a neural net to
produce approximate samples from the distribution.

Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

The generator network computes a differentiable function G mapping
z to an x in data space

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 31 / 55

Generator Networks

A 1-dimensional example:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 32 / 55

Generator Networks

https://blog.openai.com/generative-models/

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 33 / 55

https://blog.openai.com/generative-models/

Generator Networks

This sort of architecture sounded preposterous to many of us, but
amazingly, it works.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 34 / 55

Generative Adversarial Networks

Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’s parameters to make the sample a little better

The idea behind Generative Adversarial Networks (GANs): train two
different networks

The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image came
from the training set or the generator network

The generator network tries to fool the discriminator network

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 35 / 55

Generative Adversarial Networks

Implicit generative models learn a mapping from random noise vectors
to things that look like, e.g., images

The advantage of implicit generative models: if you have some
criterion for evaluating the quality of samples, then you can compute
its gradient with respect to the network parameters, and update the
network’s parameters to make the sample a little better

The idea behind Generative Adversarial Networks (GANs): train two
different networks

The generator network tries to produce realistic-looking samples
The discriminator network tries to figure out whether an image came
from the training set or the generator network

The generator network tries to fool the discriminator network

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 35 / 55

Generative Adversarial Networks

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 36 / 55

Generative Adversarial Networks

Let D denote the discriminator’s predicted probability of being data

Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JD = Ex∼D[− logD(x)] + Ez[− log(1− D(G (z)))]

One possible cost function for the generator: the opposite of the
discriminator’s

JG = −JD
= const + Ez[log(1− D(G (z)))]

This is called the minimax formulation, since the generator and
discriminator are playing a zero-sum game against each other:

max
G

min
D
JD

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 37 / 55

Generative Adversarial Networks

Updating the discriminator:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 38 / 55

Generative Adversarial Networks

Updating the generator:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 39 / 55

Generative Adversarial Networks

Alternating training of the generator and discriminator:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 40 / 55

A Better Cost Function

We introduced the minimax cost function for the generator:

JG = Ez[log(1− D(G (z)))]

One problem with this is saturation.

Recall from our lecture on classification: when the prediction is really
wrong,

“Logistic + squared error” gets a weak gradient signal
“Logistic + cross-entropy” gets a strong gradient signal

Here, if the generated sample is really bad, the discriminator’s
prediction is close to 0, and the generator’s cost is flat.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 41 / 55

A Better Cost Function

Original minimax cost:

JG = Ez[log(1− D(G (z)))]

Modified generator cost:

JG = Ez[− logD(G (z))]

This fixes the saturation problem.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 42 / 55

Generative Adversarial Networks

Since GANs were introduced in 2014, there have been hundreds of
papers introducing various architectures and training methods.

Most modern architectures are based on the Deep Convolutional GAN
(DC-GAN), where the generator and discriminator are both conv nets.

GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo

Good source of horrible puns (VEEGAN, Checkhov GAN, etc.)

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 43 / 55

https://github.com/hindupuravinash/the-gan-zoo

GAN Samples

Celebrities:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 44 / 55

GAN Samples

Bedrooms:

Karras et al., 2017. Progressive growing of GANs for improved quality, stability, and variation

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 45 / 55

GAN Samples

ImageNet object categories (by BigGAN, a much larger model with a
bunch more engineering tricks):

Brock et al., 2019. Large scale GAN training for high fidelity natural image synthesis.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 46 / 55

GAN Samples

GANs revolutionized generative modeling by producing crisp,
high-resolution images.

The catch: we don’t know how well they’re modeling the distribution.

Can’t measure the log-likelihood they assign to held-out data.
Could they be memorizing training examples? (E.g., maybe they
sometimes produce photos of real celebrities?)
We have no way to tell if they are dropping important modes from the
distribution.
See Wu et al., “On the quantitative analysis of decoder-based
generative models” for partial answers to these questions.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 47 / 55

CycleGAN

Style transfer problem: change the style of an image while preserving the
content.

Data: Two unrelated collections of images, one for each style

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 48 / 55

CycleGAN

If we had paired data (same content in both styles), this would be a
supervised learning problem. But this is hard to find.

The CycleGAN architecture learns to do it from unpaired data.

Train two different generator nets to go from style 1 to style 2, and
vice versa.
Make sure the generated samples of style 2 are indistinguishable from
real images by a discriminator net.
Make sure the generators are cycle-consistent: mapping from style 1 to
style 2 and back again should give you almost the original image.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 49 / 55

CycleGAN

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 50 / 55

CycleGAN

Style transfer between aerial photos and maps:

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 51 / 55

CycleGAN

Style transfer between road scenes and semantic segmentations (labels of
every pixel in an image by object category):

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 52 / 55

Overview

Four modern approaches to generative modeling:

Autoregressive models (Lectures 3, 7, and 8)

Generative adversarial networks (this lecture)

Diffusion models (next lecture)

Variational autoencoders (next lecture)

All four approaches have different pros and cons.

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 53 / 55

Trade-offs of Generative Approaches

So far, we have seen four different approaches:

Autoregressive models (Lectures 3, 7, and 8)
Generative adversarial networks (this lecture)
Diffusion models (next lecture)
Variational autoencoders (next lecture)

They all have their own pro and con. We often pick a method based
on our application needs.

Some considerations for computer vision applications:

Do we need to evaluate log likelihood of new data?
Do we prefer good samples over evaluation metric?
How imporant is representation learning, i.e. meaningful code vectors?
How much computational resource can we spent?

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 54 / 55

Trade-offs of Generative Approaches

In summary:

Log-likelihood Sample Representation Computation

Autoregressive
GANs

Diffusion
VAEs

To be continued...

Jimmy Ba and Bo Wang CSC413/2516 Lecture 9: Large Language Models and GANs 55 / 55

