CSC413 Tutorial;
Optimization
for Machine Learning

“How to train your neural network’

; "'q o 1
KO Rex Ma

January 24, 2023

1 Based on tutorials/slides by Harris Chan, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang, Shervin Mehryar & others

Overview

e Review: Overall Training Loop
e Initialization
e Optimization
o Gradient Descent
o Momentum, Nesterov Accelerated Momentum
o Learning Rate Schedulers: Adagrad, RMSProp, Adam
e Hyperparameter tuning: learning rate, batch size
e Jupyter/Colab Demo in PyTorch

Neural Network Training Loop

Parameters| ,

I
|| mnitialize |
i
I

| Learning
' Rate, etc.

\ 4 \ 4
) Loss Empirical Risk
MO £(n(x;0),) RO)

Optimizer

Update parameters

Initialize

Initialization of Parameters ot yn———

Initial parameters of the neural network can affect the gradients and learning

Idea 1: Constant initialization

e Result: For fully connected layers: identical gradients, identical
neurons. Bad!

Idea 2: Random weights, to break symmetry

e Too large of initialization: exploding gradients
e Too small of initialization: vanishing gradients

Interactive Demo: Initialization

1. Choose input dataset
Select a training dataset.

This legend details the color scheme for labels, and the values of the
weights/gradients.

Label/Prediction: [|
T T 1
0 0.5 1
Weight/Gradient: [1
I 1 1
neg zero pos
Node Type: Olnput Relu Osigmoid

Source: Initializing neural networks. httr

2. Choose initialization method

Select an initialization method for the values of your neural network parameters®.

Zero Too small Appropriate Too large
it i —
-~ G o h N i v
~ - . _> N\ — = —/_7' S
@:————/ b \\\ S oA ~
= = z S\« s/ e
> ~
N va e N \\/\/'< =
\\ S/ 7 1 o : /\/\ D ~
x < = x_={()------0
PN = ~ e ZNE —
NN _ NN~ 7
/. N\ N o 4 = / /\ - \(> -
727w ’~ 2 N .
@ = = \ h // - - \\\\\ ;e -
—_ N ~
s B —/_ _/ % Q -
~ /7 = N
~ X 7 _ -
=~ ~ \ // e =
~ —

Select whether to visualize the weights or gradients of the network above.

Weight Gradient

Initialize
Parameters

3. Train the network.

Observe the cost function and the decision boundary.

C > »

Cost

https://www.deeplearning.ai/ai-notes/initialization/

Initialize

Initialization: Calibrate the variance Parameters

Two popular initialization schemes:

1: Xavier Init;: For Tanh activation

1 ! 2
wll ~ N(,u = 0,02 =) wh ~ N(O, 1] 171l)

nli—1] or

2. Kaiming He Init: ReLU activatio\

9 # of neurons in layer
l _ 2 . /-1
Wl ~ N(p=0,0% = o)

bl =0

1: Glorot & Bengio: Understanding the difficulty of training deep feedforward neural networks
2: He et al.: Delving Deep into Rectifiers: Surpassind Human-Level Performance on ImaageNet Classification

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf?hc_location=ufi
http://https//arxiv.org/pdf/1502.01852.pdf

Initialization: Xavier Initialization Intuition

For networks with Tanh activation functions, Xavier Init aim for the
following behaviour of the activations:

1. Variance of activation ~ constant across every layer

Var(a') = Var(a'™1)

2. Mean of the activation and weights = zero

Initialize
Parameters

Initialize

Initialization: Xavier Initialization Proof Parameters

For networks with Tanh activation functions, and fully connected layers:
Layer
e
(1) nt (1) (I-1) (@) _ (Z)
2 =D Wi a, = f(z)
Activations
Express variance of activations in layer | as function of variance of weights:

Var(al(cl)) — Var(zl({;l)) In linear region for f — tanh

= Var(Z7 wga)
— Z Var (,w;c) ,El 1)) Assume product terms

are independent, bring
summation outside

Initialize

Initialization: Xavier Initialization Proof Parameters
Assuming that the weights and activations are independent at init, apply identity:
Elw'] = 0 Var(AB) = E[A]?Var(B) + E[A]?Var(A) + Var(A)Var(B)
(4) A
Var(a;,’) oueo<o et feme ™

= Z”H [E(w{)] Var(a{ ™) +[W4>>J2Var<w§£> +Var(w},) Var(a) ")
= Z Var(wé))Var(,El 1))

Weights are iid
— nl—lVar(wl(c))Var((l 1)) Inpugtsarey, Var(w(l)) — nll—l

Var(a(l)) — nl- 1Va.r(w)Var(al 1))

Initialize

Interactive Demo: Initialization Schemes Parameters

1. Load your dataset 2. Select an initialization method

3. Train the network and observe
Load 10,000 handwritten digits images (MNIST).

Among the below distributions, select the one to use to initialize your parameters®. The grid below refers to the input images, Blue

; squares represent correctly classified images.
Zero Uniform Xavier Standard Normal squares represent misclassified images.
c > »

Output predictions of 100 images

All] Al2] A[3] Al4]

P~ o

¢
[
&
5
A
¢
]
2

N WO ol W e o

~VeoNQ— Lo
QRN ~ oo\\n\\ww

~© " O N«

Misclassified: 50/100 Cost: 1.97

| | |
[‘
/ 1
||
| \ l
]
\
1
\ /
T 1 T T T T T T T T T T
E 0 14 o0 11 o 14 0 1
n)
Y = 49 A e A A4 y= AP!
> > TANH =" > output probability over 10
Batch of 100 grayscale images of shape 28x28 = o)
Xahapo = DEs 100) brom e T84 - 2025 shape <hap9 snaoe shape classes for a batch of
(300,100) (300,100) (300,100)| (300,100) 100 images
5 shape = (10,100)
300 naurons 300 neurnns N0 naurnns 20N naurons 10 neurons

Source: Initializing neural networks. https://www.deeplearning.ai/ai-netes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Batch Normalization Layer

Can we compensate for bad initializations
in some other way?

BatchNorm’s Ildea:

e Explicitly normalize the activations of
each layer to be unit Gaussian.

e Apply immediately after fully
connected/conv layers and before
non-linearities

e Learn an additional scale and shift
and running statistics for test time

Initialize
Parameters

Input: Values of x over a mini-batch: B = {z1._ . };
Parameters to be learned: v, 3

Output: {y; = BN, ()}
1 m
P .
UB m ;xz

1 m
of — > (@i — ps)®
=1

Z; — UB
Vo +e

Yi & 7% + B = BN, (i)

// mini-batch mean

// mini-batch variance

T; // normalize

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation z over a mini-batch.

loffe & Szegedy: Batch Naormalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Initialize

Batch Normalization Layer Paramaters
e BatchNorm significantly speeds et ? 2|
up training in practice (Fig 1a) o) = = - Wiuion ° BEeme————
e Distribution after connected layer ®7 0K 20K 30K 4ok s0k 2 D ——
(a) (b) Without BN (c) With BN

IS much more stable with BN,
: . . Figure 1: (a) The test accuracy of the MNIST network
reducmg the “internal covariate trained with and without Batch Normalization, vs. the
shift”, i.e. the change in the number of training steps. Batch Normalization helps the
S S network train faster and achieve higher accuracy. (b,
distribution of network activations ¢y The evolution of input distributions to a typical sig-
moid, over the course of training, shown as {15, 50, 85}th
percentiles. Batch Normalization makes the distribution

parameters during training more stable and reduces the internal covariate shift.

due to the change in network

loffe & Szegedy: Batch Naormalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Neural Network Training Loop

Minibatch of data

- : 3.
N | [Minibateh |
1 , 1__*
Dataset’ i| SizeM ¢ " Input
1. i
Initialize |: '9
Parameters ; Network

LLoss

h(x;60)—> L(h(x;0),y)

Empirical Risk
R(6)

| Learning
' Rate, etc. |

Update parameters

Optimization [opmizer }

e Optimization: (informal) Minimize (or maximize) some quantity.
e Applications:
o Engineering: Minimize fuel consumption of an automobile
o Economics: Maximize returns on an investment
o Supply Chain Logistics: Minimize time taken to fulfill an order
o Life: Maximize happiness

Optimization: Formal definition [Optimizer }

e Given a training set: {(331 . y1), c ey (wna yn)}
e Prediction function: h(w; 9)

e Define a loss function: L(h(x;0),y)
e Find the parameters: = (6, ..., 6y

which minimizes the empirical risk R():

ming R(0) = ming = Y7 L(h(z:;6),y;)

Optimization: Formal definition [opmizer }

e Empirical risk R(Q):

ming R(#) = miny 1 S L(h(x50),y;)

n
e The optimum satisfies: VR(H*) — 0

OR OR OR
e Where VR(Q) — (891 700,77 B_Qk)

e Sometimes the equation has closed-form solution (e.g. linear regression)

Gradient Descent

Geometric interpretation:
e Gradient is perpendicular to the tangent of the level

set curve
e Given the current point, negative gradient direction

decreases the function fastest
Alternative interpretation:

e Minimizing the first-order taylor approx of keep the
new point close to the current point

fat) + V(@) (@ - ') + £ |le — 2|

[Optimizer }

Source: Wikipedia

Optimization: Gradient Descent [opmizer }

Batch Gradient Descent:
e |Initialize the parameters randomly

e For each iteration, do until convergence:

el+1) = gik) _ pT R(O%))

/

n e RT Learning rate (a small step)

Stochastic Gradient Descent [optimizer }

e |nitialize the parameters randomly « Intuition: A noisy approximation

e For each iteration, do until convergence: of the gradient of the whole
o Randomly select a training sample (or a dataset
small subset of the training samples)

e Pro: each update requires a small
o Conduct gradient descent:

amount of training data, good for

training algorithms for a

k+1) _ pg(k k
o) = o) — v £;(6™) large-scale dataset

e Tips
o Subsample without replacement so that you visit each point on each pass through the
dataset ("epoch")
o Divide the log-likelihood estimate by the size of mini-batches, making learning rate
invariant to the mini-batch size.

Gradient Descent with Momentum [optimizer }

e |nitialize the parameters randomly

e For each iteration, do until convergence:
o Update the momentum

6+ = —_pVR(OF) 4 as®)

Movement =
Negative of Gradient + Momentum

-—p Negative of Gradient
«sssp Momentum

——p Real Movement

o Conduct gradient descent:

H(k+1) J— e(k) _|_ 5(k+1) Gradient =0

e Pro: “accelerate” learning by accumulating some “velocity/momentum” using
the past gradients

Nesterov Accelerated Gradient

e |nitialize the parameters randomly

e For each iteration, do until convergence:

o Update the momentum
5 — _pUR(OW 4+

o Conduct gradient descent:

adF)

gk+1) — g(k) 4 §(k+1)

) + as®)

e Pro: Look into the future to see how much momentum is required

[Optimizer }

Nesterov Accelerated Gradient [optimizer }

° make a big jump in the direction of the previous accumulated gradient
® Then measure the gradient where you end up and make a correction

— Standard
Momentum

> Jump

\—HVR(O(k) + OéCs(k)) —> Correction

nesterov

Learning Rate Schedulers [oplmizer }

What if we want to be able to have a per-parameter learning rate?

e Certain parameter may be more sensitive (i.e. have higher curvature)

Learning Rate Schedulers: Adagrad [oplmizer }

e |nitialize the parameters randomly

e For each iteration, do until convergence:
o Conduct gradient descent on i-th parameter:

Ui

Ok+1, = Oki —
-l) /Gk7z’ e

Gri= Gr_1i+ (VR(0r:))’

- VR(0k.;)

Intuition: It increases the learning rate for more sparse features and decreases
the learning rate for less sparse ones, according to the history of the gradient

Optimizer }

Learning Rate Schedulers: RMSprop/Adadelta

e |nitialize the parameters randomly

e For each iteration, do until convergence:
o Conduct gradient descent on i-th parameter:

n
V/Gri+e VEO%ki)

Gri=7 Gr—1:+ (1 —7) (VR(ek,i))2

Okt+1: =0k —

Intuition: Unlike Adagrad, the denominator places a significant weight on the
most recent gradient. This also helps avoid decreasing learning rate too much.

Learning Rate Schedulers: Adam |

e |Initialize the parameters randomly
e For each iteration, do until convergence:

o Conduct gradient descent on i-th paW = 1—at

gik+1)i — g(ki) 4 L(k) - VR(6%))

A (ks7)

G ;
. . \@(1€,2) L G(k’z)
G®i) = yGE—14) 4 (1 — 4)(VR(6(F))2 = 14
ki) _ k—1, ki Bias-corrected forms of
m%i) = am*E-11) 1 (1 — a)VR(6*)) T
TITLE CITED BY YEAR
Adam: A method for stochastic optimization 133579 2015

D Kingma, J Ba
International Conference on Learning Representations

Optimizer

Optimizers Comparison (excluding Adam)

- SGD -
- Momentum [
w— NAG 3 — SGD
— Adagrad - = Momentum
Adadelta -~ NAG
Rmsprop - Adagrad
Adadelta
< 4 Rmsprop
5 :
0

1.0

SGD optimization on loss surface contours

SGD optimization on loss surface contours

Source: Sebastian Ruder, https://ruderiofoptimizing-aradient-descent/

https://ruder.io/optimizing-gradient-descent/

Optimizer

Interactive Demo: Optimizers

In this visualization, you can compare optimizers applied to different cost This 2D plot describes the cost function's value for different values of the two
functions and initialization. For a given cost landscape (1) and initialization (2), ~ parameters (wy,w2). The lighter the color, the smaller the cost value.
you can choose optimizers, their learning rate and decay (3). Then, press the Himmelblaus Function
play button to see the optimization process (4). There's no explicit model, but Cost
you can assume that finding the cost function's minimum is equivalent to
finding the best model for your task. 000098
00039
0016
1. Choose a cost landscape (s
025
Select an artificial landscape 7 (w;, ws). H
N «
' N s
| I3
W s

e 7 by ;

2. Choose initial parameters

On the cost landscape graph, drag the red dot to choose initial parameter
values and thus the initial value of the cost.

3. Choose an optimizer

Select the optimizer(s) and hyperparameters.

Optimizer Learning Rate Learning Rate Decay
The graph below shows how the value of the cost changes through successive
epochs for each optimizer.
Gradient Descent |0.001 0 Optimizer
o
Momentum |0.001 [0 N momentu
o msprop
adam
RMSprop [0.001 0
T T]
Adam [0.001 [0 Epoch

4. Optimize the cost function

c >

Source: Parameter optimization in neural networks: HE

https://www.deeplearning.ai/ai-notes/optimization/

Neural Network Training Loop

Minibatch of data

.‘ i3 . |
|| Minibatch | ___
Dotade F’ Size M '_) Input Output
») el X; Vi =
: Initialize i ' Neural Loss Empirical Risk
> h(x;0)—>»
Parameters | : d Network (x:6) L(h(x;0),y) R(6)

|
| 3-

l Learning
| Rate, etc. |

-

: Optimizer

Update parameters

Learning Rate

Ideal Learning Rate should be:

e Should not be too big (objective will blow up)

e Should not be too small (takes longer to
converge)

Convergence criteria:

e Change in objective function is close to zero
e Gradient norm is close to zero
e \/alidation error starts to increase

(early-stopping)

Learning
Rate, etc.

loss

low learning rate

high learning rate

good learning rate

epoch

|dealized cartoon depiction of
different learning rates.

Image Credit: Andrej Karpathy

Learning

Learning Rate: Decay Schedule Rate, etc.

Anneal (decay) learning rate over time so the parameters can settle into a local
minimum. Typical decay strategies:

1. Step Decay: reduce by factor every few epochs (e.g. a half every 5 epochs,

or by 0.1 every 20 epochs), or when validation error stops improving
2. Exponential Decay: Set learning rate according to the equation

Hyperparam

3. 1/t decay: ’f](t) _ Mo

Neural Network Training Loop

....... Minibatch ofdata |
— IF. - _ . ql

QD a—

|1 Minibatch ! :

Dataset | | SizeM | " Input Output

» R -d' xi yi
e o S S N P !
; \ 4 v
itiali I Empirical Risk
Initialize Neural h(x:) 0SS p
Parameters|: Network L(h(x;0),y) R(0)

| Learning
' Rate, etc. ;

: Optimizer

Update parameters

Minibatch

BatCh S|Ze Size, etc.

Batch Size: the number of training data points for computing the empirical risk at
each iteration.

e Typical small batches are powers of 2: 32, 64, 128, 256, 512,
e | arge batches are in the thousands

Large Batch Size has:

e Fewer frequency of updates
e More accurate gradient
e More parallelization efficiency / accelerates wallclock training

e May hurt generalization, perhaps by causing the algorithm to find poorer
local optima/plateau.

Batch Size

Related papers on batch size:

e Goyal et al., Accurate, large minibatch SGD
o Proposes to increase the learning rate by of the minibatch size

e Hoffer et al., Train longer generalize better

o Proposes to increase the learning rate by square root of the minibatch size ®
Smith et al., Don't decay the learning rate, increase the batch size
o Increasing batch size reduce noise, while maintaining same step size

Minibatch
Size, etc.

Minibatch

Hyperparameter Tuning S Cl
Several approaches for tuning multiple hyperparameters together:
Grid Layout Random Layout
~—— Prefer
random
A " search over
@ Q
b © grid search,
% g higher
a S chance of
= £ finding better
e £ performing
é é hyper param
- O (o} O -
- s
Important parameter Important parameter

Try Weights & Biases

Image source: Random Search for Hyper-Parameter Optimization

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://wandb.ai/site

Minibatch

Hyperparameter Tuning Size, etc

Search hyperparameter on log scale:

® learning rate = 10 ** uniform(-6, 1)
o Learning rate and regularization strength have multiplicative effects on the training dynamics

e Start from coarse ranges then narrow down, or expand range if near the
boundary of range

One validation fold vs cross-validation:

e Simplifies code base to just use one (sizeable) validation set vs doing cross
validation

Deep Learning Tuning Playbook s, ceoge i

e for engineers and researchers (both individuals and teams) interested in maximizing the
performance of deep learning models

Geoffrey Hinton
' @geoffreyhinton
A huge amount of practical experience has been

distilled into this great guide to tuning deep learning
models.

€ George E. Dahl @GeorgeEDahl - Jan 19

We've just released the first version of our Deep Learning Tuning Playbook! This
is our attempt to distill our process for actually getting good results with deep
learning. We emphasize hyperparameter tuning since it has been a large pain
point. github.com/google-researc...

Show this thread

2:24 PM - Jan 19, 2023 - 122.8K Views

https://github.com/google-research/tuning_playbook

Jupyter/Colab Demo in
PyTorch

See Colab notebook

References

e Notes and tutorials from other courses:
o ECES521 (Winter 2017) tutorial on Training neural network
o Stanford's CS231n notes on Stochastic Gradient Descent, Setting up data and loss, and

Training neural networks
o Deeplearning.ai's interactive notes on |nitialization and Parameter optimization in neural

netwaorks
o Jimmy Ba's Talk for Optimization in Deep Learning at Deep Learning Summer School 2019
e Academic/white papers:
o SGD tips and tricks from Leon Bottou
o Efficient BackProp from Yann LeCun
o Practical Recommendations for Gradient-Based Training of Deep Architectures from Yoshua
Bengio

https://github.com/topics/ece521
http://www.psi.toronto.edu/~jimmy/ece521/Tut2.pdf
https://cs231n.github.io/
https://cs231n.github.io/optimization-1/
https://cs231n.github.io/neural-networks-2/
https://www.deeplearning.ai/
https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.youtube.com/watch?v=eHEkbDHVDuI
https://dlrl.ca/
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/abs/1206.5533

