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What are Language Models?

e Narrow Sense
o A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
* P(on|the cat sat) * P(the|the cat sat on)
*P(mat|the cat sat on the)

Implicit order

e Broad Sense
o Decoder-only models (GPT-X, OPT, LLaMA, PaLM)
o Encoder-only models (BERT, RoBERTa, ELECTRA)
o Encoder-decoder models (T5, BART)



Large Language Models - Billions of Parameters
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Large Language Models - Hundreds of Billions of Tokens
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Large Language Models - yottaFlops of Compute
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Why LLMs?

e Scaling Law for Neural Language Models
o Performance depends strongly on scale! We keep getting better performance as we scale
the model, data, and compute up!
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https://arxiv.ora/pdf/2001.08361.pdf
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Why LLMs?

e Generalization
o We can now use one single model to solve many NLP tasks

[ "translate English to German: That is good."

[ "cola sentence: The "Das ist gut."]

course is jumping well."

"not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to

"six people hospitalized after
a storm in attala county."

J

survey the damage after an onslaught
of severe weather in mississippi..”

https://arxiv.org/pdf/1910.10683.pdf
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Why LLMs?

e Emergent Abilities

o Some ability of LM is not present in smaller models but is present in larger models
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Emergent Capability - In-Context Learning

Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer ¢ example #1

gradient update

6-|<-

1 peppermint => menthe poivrée < example #2

gradient update

(_Ié

Vv

1 plush giraffe => girafe peluche < example #N

gradient update

1 cheese => < prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 sea otter => loutre de mer < example

3 cheese => < prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: <« task description
sea otter => loutre de mer «—‘— examples
peppermint => menthe poivrée «—

plush girafe => girafe peluche «-

cheese => < prompt

https://arxiv.org/pdf/2005.14165.pdf
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Emergent Capability - In-Context Learning

No Prompt Prompt
- Please unscramble the letters into
Zero-shot skicts = FE. aword, and write that word:
(0s) skicts = sticks

) ) Please unscramble the letters into
chiar = chair

- ; aword, and write that word:
hs.s)hot skicts = . chiar = chair
skicts = sticks
chiar = chair Please unscramble the letters into
-~ aword,and write that word:
Few-shot pciinc = picnic chiar = chair
(FS) skicts = sticks [---]

pciinc = picnic
skicts = sticks
https://www.cs.princeton.edu/courses/archive/fall22/cos597 G/lectures/lec04.pdf
D
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Emergent Capability - In-Context Learning
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Pretraining + Fine-tuning Paradigm
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Pretraining + Prompting Paradigm

e Fine-tuning (FT) Stronger
o  + Strongest performance task-specific
o - Need curated and labeled dataset for each performance
new task (typically 1k-100k ex.)
o - Poor generalization, spurious feature
exploitation

e Few-shot (FS)
o+ Much less task-specific data needed
o+ No spurious feature exploitation
o - Challenging
e One-shot (15)
o+ "Most natural," e.g. giving humans instructions
o - Challenging
e Zero-shot (OS)
o+ Most convenient

) ) More convenient,
o - Challenging, can be ambiguous

general, less data




Emergent Capability - Chain of Thoughts Prompting

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans on
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Co they have? J

A: The answer is 27. x )

https://arxiv.ora/pdf/2201.11903.pdf

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Co they have? J

The l

A:

answeris 9. ¢/
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Emergent Capability - Chain of Thoughts Prompting

—— Standard prompting

/( cs0Aommonsense) -, o~ Chain-of-thought prompting

|
|

Q: Roger has 5 tennis balls. He buys Q: How many keystrokes are needed Q: Sammy wanted to go to where the - = = Prior supervised best
2 more cans of tennis balls. Each can to type the numbers from 1 to 500? people were. Where might he go?
has 3 tennis balls. How many tennis Answer Choices: (a) 1156 (b) 1392 (c) 1480 Options: (a) race track (b) populated areas
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Model scale (# parameters in billions)

https://arxiv.ora/pdf/2201.11903.pdf
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(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of te®

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

Emergent Capability - Zero Shot Col Prompting

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of tem
balls. Each can has 3 tennis balls. How many tennis balls does

he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

o /

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) The juggler can juggle 16 balls. Half of the balls are golf

blue. So there are 8 /2 = 4 blue golf balls. The answer is 4. /

@s. So there are 16 / 2 = 8 golf balls. Half of the golf balls ?

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) 8 X

https://arxiv.ora/pdf/2205.11916.pdf

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v
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Emergent Capability - Zero Shot CoT Prompting

[2nd prompt)

[1st prompt]
Reasoning Extraction Answer Extraction

/ Q: On average Joe throws 25 punches per \

Q: On average Joe throws 25 punches per
minute. A fight lasts 5 rounds of 3 minutes. How | ____ | minute. Afightlasts 5 rounds of 3 ---
many punches did he throw? A: Let's think step by step.
A: Let's think step by step.
In one minute, Joe throws 25 punches. - - -In five
@ If’ rounds, Joe throws 5 * 75 = 375 punches. .
Uherefore, the answer (arabic numerals) is /

LLM !
iy ! U
! LLM

In one minute, Joe throws 25 punches. !
In three minutes, Joe throws 3 * 25 = 75 punches. @
In five rounds, Joe throws 5 * 75 = 375 punches. [ 375.

https://arxiv.ora/pdf/2205.11916.pdf
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Emergent Capability - Self-Consistency Prompting

Chain-of-thought
prompting

Self-consistency

ﬂ): If there are 3 cars in the parking \
lot and 2 more cars arrive, how many

cars are in the parking lot?

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3 +2=>5cars. The answer is 5.

Q: Janet’s ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells
the remainder for $2 per egg. How

much does she make every day?

\A:

https://arxiv.ora/pdf/2203.11171.pdf

Language
model

Language
model

Greedy decode
This means she uses 3 + 4 = 7 eggs every day.

She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

The answer is $14. ]
The answer is $14.

Sample a diverse set of :
reasoning paths to aggregate final answers
G S I
She has 16 - 3 - 4 =9 eggs
i\ left. So she makes $2*9 = | The answer is $18.
$18 per day. |

4
N

This means she she sells the

remainder for $2 * (16 - 4 - 3). The answer is $26.
= $26 per day. |
1

4
She eats 3 for breakfast, so | )
she has 16 - 3 = 13 left. Then |
she bakes muffins, so she I The answer is $18.
has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2=$18. |

Marginalize out reasoning paths


https://arxiv.org/pdf/2203.11171.pdf

Emergent Capability - Least-to-Most Prompting

Problem Reduction

A: To solve “How many times
can she slide before it
closes?”, we need to first
solve: “How long does each

Q: It takes Amy 4 minutes to climb to the top
of a slide. It takes her 1 minute to slide down.
The water slide closes in 15 minutes. How
many times can she slide before it closes?

Language
Model

Stage 1 trip take?”
Sequentially Solve Subquestions

Stage 2 = S
It takes Amy 4 minutes to climb to the top of a A: It takes Amy 4 minutes to
slide. It takes her 1 minute to slide down. The Language climb and 1 minute to slide
slide closes in 15 minutes. Model down. 4 + 1 = 5. So each trip

Subquestion 1 —-\Q: How long does each trip take? ) takes 5 minutes.

It takes Amy 4 minutes to climb to the top of
a slide. It takes her 1 minute to slide down.
The slide closes in 15 minutes.

A: The water slide closes in
15 minutes. Each trip takes 5
minutes. So Amy can slide
15 + 5 = 3 times before it
closes.

A —— Q: How long does each trip take?

ppend mode . 7 :

e _| A:lttakes Amy 4 minutes to climb and 1
Subquestion 1 minute to slide down. 4 + 1 = 5. So each trip
takes 5 minutes.

Language
Model

Q: How many times can she slide before it
closes?

Subquestion 2 —

https://arxiv.ora/pdf/2205.10625.pdf
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Emergent Capability - Augmented Prompting Abilities

Advanced Prompting Techniques Ask a human to
e Zero-shot Col Prompting e Explain the rationale
e Self-Consistency e Double check the answer
e Divide-and-Conquer e Decompose to easy subproblems

Large Language Models demonstrate some human-like behaviors!



Training Architectures

Encoder-decoder models (T5, BART)
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http://jalammar.github.io/illustrated-transformer/

Decoder-only models (GPT-X, PaLM)
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Training Objectives - UL2

R-Denoising S-Denoising X-Denoising
Inputs: Inputs: Inputs: Inputs:

He dealt in archetypes before anyone knew such - He dealt in archetypes before anyone knew such i - He dealt in archetypes be{ 16 I He dealt in archetypes[ 3 Ianyone knew such
things existed, and hisl 3 Ito take an emotion or a things existed, and his ability to take an emotion or a | |things existed, and his ability to take an emotion or a things existed, a[ 3 kbility totake an | 5 I
situationl 5 lt to the limit helped create a cadre of situation and push it to the limit helped create a cadre of i situationl 32 situation and push it to the limit helped] 4 Jcadre of
plays that have been endIesstI 4 f and copied. plays that have been endlessly staged — and copied. E plays that have been endlessly staged — and copied. pIaysl 4 Ibeen endlessly staged —aﬂ 5 |
Apart from this, Romeo and Juliet inspired Malorie Apart from this, Romeo and Ju|ietl | |Apart frorr{ 24 |Ma|orie Apart from this, Romeo and Juliet inspired Malorie
Blackman's Noughts l 5 Ithere are references to i Blackman's Noughts & Crosses, there are references to Blackman's[ 5 lCrosses,[zIare references to
Hamlet in Lunar Park by Bret Easton EIIishe 95 | |[Hamlet in Lunarl 24 I Hamlet inl 3 Fark by Bret Easton@ andl 4 I
Tempest was the cue for The Magus by John Fowles. i Tempest was the cue for The Magus by John Fowles. I 4 ]was themfor The[ 4 Iby John| 5 ]

Target: E Target: Target:
s w4 s s | | e | - RN
95 | 32 = 5 & 5 3=
| 2% o4 4 sz
: 2 (5]

https://arxiv.ora/pdf/2205.05131.pdf
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What kinds of things does pretraining learn?

» Stanford University is located in , California. [Trivia]

* |put___ fork down on the table. [syntax]

* The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
* | went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

* Overall, the value | got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was __. [sentiment]

* Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning — this is harder]

* | was thinking about the sequence thatgoes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rihf.pdf
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Finetune - Instruction Finetune

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?
A

Chain-of-thought finetuning

';nassvgz:gi::g?x i\sgtg:.estlon = The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more

apples, so they have 3 + 6 = 9.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

Language
model

Multi-task instruction finetuning (1.8K tasks)

Inference: generalization to unseen tasks

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

https://arxiv.org/pdf/2210.11416.pdf
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Finetune - Instruction Finetune

Finetuning tasks

-

TO-SF

Commonsense reasoning
Question generation
Closed-book QA
Adversarial QA
Extractive QA
Title/context generation
Topic classification
Struct-to-text

~

-

Muffin

Natural language inference
Code instruction gen.
Program synthesis

Dialog context generation

Closed-book QA
Conversational QA
Code repair

69 Datasets, 27 Categories, 80 Tasks

N
>

Arithmetic reasoning

CoT (Reasoning)

Explanation generation

4
)

p

Natural
Instructions v2

Cause effect classification
Commonsense reasoning
Named entity recognition
Toxic language detection
Question answering
Question generation
Program execution

Text categorization

Commonsense Reasoning Sentence composition o
55 Datasets, 14 Categories, Implicit reasoning 372 Datasets, 108 Categories,
193 Tasks J \_ 9 Datasets, 1 Category, 9 Tasks Y, \ 1554 Tasks

~

4

% A Dataset is an original data source (e.g. SQUAD).
% A Task Category is unique task setup (e.g. the SQUAD dataset is configurable for multiple task categories such as
extractive question answering, query generation, and context generation).
% ATask is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g.
query generation on the SQUAD dataset.)

https://arxiv.org/pdf/2210.11416.pdf
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Finetune - Instruction Finetune

Instruction
without
exemplars

Instruction
with exemplars

Without chain-of-thought

With chain-of-thought

(" h 4 N
Answer the fc_)llowing Answer the following yes/no question A haikq is a japanese
yes/no question. by reasoning step-by-step. tl:]ree_-llnr(‘a poem. .
. " » m)  yes = il ?it s s ort enoug

all yeu WHILE & Wholc Can you write a whole Haiku in a to fitin 280
Haiku in a single tweet? single tweet? characters. The
answer is yes.

. L

N [
}?és'bl‘:g“(;i;;?;:‘ouowmg Q: Answer the following yes/no question by
Could a dandelion suffer reasoning step-by-step. -
from hepatitis? Could a dandelion suffer from hepatitis? Ahaikuis ai
AlD P : A: Hepatitis only affects organisms with livers. th ol lll 04 japanese
’ -  yes Dandelions don’t have a liver. The answer is no. Iec an=hoset
Q: Answer the following / : : Thqt e = Onehalgh
e's i alicstion Q: Answer the following yes/no question by to fit in 280
y question: . reasoning step-by-step. characters. The
Can you write a whole Haiku c - hole Haikuili inal ’ :
et e A.an you write a whole Haiku in a single tweet? answer is yes.
A: ’
o A

https://arxiv.org/pdf/2210.11416.pdf
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Finetune - Instruction Finetune

60 60 | 540B model
032 2 62B model
S 40 | 5 40
S g S g
T = R
B 3 —e— 1,836 tasks N 8 8B model
g % 20 —eo— 282 tasks g % 20
5 < —o— 89 tasks 5 <
z 9 tasks <
ol —ae— No finetuning ol
8B 62B 540B 0 9 89 282 682 1,836
Model size (# parameters) Number of finetuning tasks

https://arxiv.org/pdf/2210.11416.pdf
D
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Finetune - RLHF

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our
Explain the moon
prompt dataset. landing to a 6 year old

v

Alabeler
demonstrates the @
desired output 7
bEhaVior' Some pet;ple went
to the moon...

This data is used SFT
to fine-tune GPT-3 2o

5 N ./)?.%.
with supervised \.\52{/
learning. 2

https://arxiv.ora/pdf/2203.14465.pdf

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model %

Explain the moon
outputs are landing to a 6 year old
sampled. o

Explain gravity... Explain war...

Moon s natural People went to
satollte o, the moon...

Alabeler ranks

the outputs from @
best to worst.

0-0-0-0
This data is used oM
to train our 22
e o o
reward model. N7
0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from wm:m
the dataset. about frogs
The policy I
enerates 2o
g .%.
an output. \}SX./
Once upon a time..

The reward model

calculj?es a ./}?.7&.
reward for

Do
the output.

The reward is
used to update
the policy
using PPO.



https://arxiv.org/pdf/2203.14465.pdf

Application - ChatGPT
ChatGPT

& % A

Examples Capabilities Limitations
"Explain qguantum computing in Remembers what user said May occasionally generate
simple terms" - earlier in the conversation incorrect information
"Got any creative ideas for a 10 Allows user to provide follow- May occasionally produce
year old's birthday?" - up corrections harmful instructions or biased
content
"How do | make an HTTP Trained to decline inappropriate
request in Javascript?" > requests Limited knowledge of world and
events after 2021



Application - ChatGPT

l Large-scale language model pretraining
Training on code

[ — GPT-3 Initial — Instruction tuning

Davinci

GPT-3 Series Codex Initial InstructGPT Initial
Code-davinci-001 Instruct-davinci-beta
Code-cushman-001 Text-davinci-001

v I |

LM + code training then instruction tuning

Code-davinci-002

GPT-3.5 Series l Supervised instruction tuning
RLHF l— Text-davinci-002 _l RLHF
Text-davinci-003 ChatGPT

https://vaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Source
s-b9a57ac0fcf74f30a1ab9e3e36faidci
D



https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1

Finetune - Bootstrapping

¥

Q: What can be used

Question, Rationale, Answer Correct to carry a small dog?
Answer Answer Choices:
I (a) swimming pool
I Finetune Rationale (b) basket
ST TT T Language |Generation Ty (c) dog show
ationale, Answer
Question Model (d) backyard

(e) own home

A: The answer must be
something that can be
used to carry a small
dog. Baskets are
designed to hold things.
Therefore, the answer
is basket (b).

Rationalize

Wrong
Answer

\ J [ Rationale, Answer

https://arxiv.ora/pdf/2203.14465.pdf



https://arxiv.org/pdf/2203.14465.pdf

Finetune - Bootstrapping

Q: John buys 20 cards and 1/4 are
uncommon. How many uncommon
cards did he get?

A: John gets 20 * 1/4 = 5 uncommon
cards. The answer is 5.

Q: Amy is 10. Jake is 8. Alex’s age is
right in the middle. How old is Alex?

O S e
- Tralnlng -set questions or

. self-generated questions

Alex is 10-8 =[2|
years old.

Alex’s age is in the

middle of 8 and 10.

Alex is(9)years old.

(8+10)/2 =9.
The answer is

https://arxiv.ora/pdf/2210.11610.pdf

____________________

Q: ... How old is Alex?
A:

O ———
Q: ... How old is Alex?

A: Let’s think step-by-step.

Maijority Output:
Voting
by answer
Multiple path
decoding
|
Self-training

Mixed formats of selected reasoning paths



https://arxiv.org/pdf/2210.11610.pdf

Large Language models Risks

e | Ms make mistakes
(falsehoods, hallucinations)
® LLMs can be misused
(misinformation, spam)
® LLMs can cause harms
(toxicity, biases, stereotypes)
e LLMs can be attacked
(adversarial examples, poisoning, prompt injection)
e |LMs can be useful as defenses

(content moderation, explanations)

' :NE I Your guide to a better future

Tech > Services & Software

It's Scary Easy to Use ChatGPT to
Write Phishing Emails

Large language models associate Muslims with
violence

Abubakar Abid, Maheen Faroogi & James Zou &

Nature Machine Intelligence 3, 461-463 (2021) | Cite this article




Resources for further reading

https://web.stanford.edu/class/cs224n/
https://stanford-cs324.github.io/winter2022/
https://stanford-cs324.qithub.io/winter2023/
https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
https://rycolab.io/classes/lim-s23/
https://yvaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Ab
ilities-of-Language-Models-to-their-Sources-b9a5/7ac0fcf/4f30alab9e3e36fald
cl

e https://www.jasonwei.net/blog/emergence



https://web.stanford.edu/class/cs224n/
https://stanford-cs324.github.io/winter2022/
https://stanford-cs324.github.io/winter2023/
https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
https://rycolab.io/classes/llm-s23/
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://www.jasonwei.net/blog/emergence

Emergent Capability - In-Context Learning

—

Learning via SGD during unsupervised pre-training

outer loop

J

inner loop

13

14

17

sequence #1

https://arxiv.org/pdf/2005.14165.pdf

Bujuses| }xaju09-uj

gaot => goat
sakne => snake
brid => bird
fsih => fish
dcuk => duck

cmihp => chimp

sequence #2

5U!UJBa|1X91UOO-U|

thanks => merci
hello => bonjour
mint => menthe
wall => mur
otter => loutre
bread => pain

]
sequence #3

WV

Bululea] 1xaju09-u|


https://arxiv.org/pdf/2005.14165.pdf

Emergent Capability - Decomposed Prompting

o | A ) O
C 0| |C o 0| || axE x| | ] LZJ»c

YY) eee A B

Standard Chain-of-Thought Decomposer Prompt Sub-Task Handlers

Prompting Prompting

7 =\

Decomposed Prompting

QC: Concatenate the second letter of every word in L . e =
"John Smith" using spaces | »Q: What are the words in "John Smith"? A: =
L_&, ["John", "Smith"] @
g —>Q1: [split] What are the words in "John Smith"? P ~
i #1: ["John", "Smith"] < ) ™ Q: What is the second letter in "John"? A:—>{
L non € =4
) . . i
E >Q2: (foreach) [str_pos] What is the second letter in #17? Q: What is the second letter in "Smith"? A: —>1 4
= "n " " Pl "m" <— |
S| #2:['0","m"] < 7 i — J
o) e p—
g —>Q3: [merge] Concatenate #2 with spaces »Q: Concatenate [0, "m"] with spaces A:——> %
\ i" #3:"om" < v 4 ‘om"<«— g | )
L?—»m: [E0Q]
g A:"om"
=

https://arxiv.ora/pdf/2210.02406.pdf



https://arxiv.org/pdf/2210.02406.pdf

Training Objectives - UL2

X-denoiser X-denoiser X-denoiser

(long spans & (long spans & (short spans
low high & high
corruption) corruption) corruption)

Inputs-to-targets
“Autoregressive”
models

Decoder-only (extreme denoising) Learning

Learning Paradigms

OR i R-denoiser

(short spans & low corruption)

Encoder-Decoder

S-denoiser
(sequential denoising / prefix

k language modeling)

Mixture-of-Denoisers

Task Paradigms

https://arxiv.ora/pdf/2205.05131.pdf



https://arxiv.org/pdf/2205.05131.pdf

Training Techniques - Parallelism

Data Parallelism

T

Pipeline Parallelism
*

Tensor Parallelism

Expert Parallelism

.’ -

>

An illustration of various parallelism strategies on a three-layer model. Each color refers to
one layer and dashed lines separate different GPUs.

https://openai.com/research/techniques-for-training-large-neural-networks



https://openai.com/research/techniques-for-training-large-neural-networks

Training Techniques - Parallelism

|9]|eled eleg OYaz

h
Pipeline Parallel

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/



https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

