Large Language Models

CSC413 Tutorial 9

Yongchao Zhou

Overview

- What are LLMs?
- Why LLMs?
- Emergent Capabilities
 - Few-shot In-context Learning
 - Advanced Prompt Techniques
- LLM Training
 - Architectures
 - Objectives
- LLM Finetuning
 - Instruction finetuning
 - o RLHF
 - Bootstrapping
- LLM Risks

What are Language Models?

- Narrow Sense
 - A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

Sentence: "the cat sat on the mat"

$$P(\text{the cat sat on the mat}) = P(\text{the}) * P(\text{cat}|\text{the}) * P(\text{sat}|\text{the cat})$$

$$*P(\text{on}|\text{the cat sat}) * P(\text{the}|\text{the cat sat on})$$

$$*P(\text{mat}|\text{the cat sat on the})$$

$$Implicit \ \text{order}$$

- Broad Sense
 - Decoder-only models (GPT-X, OPT, LLaMA, PaLM)
 - Encoder-only models (BERT, RoBERTa, ELECTRA)
 - Encoder-decoder models (T5, BART)

Large Language Models - Billions of Parameters

Large Language Models - Hundreds of Billions of Tokens

tokens seen during training

Large Language Models - yottaFlops of Compute

Al training runs, estimated computing resources used

Floating-point operations, selected systems, by type, log scale

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf

Why LLMs?

Scaling Law for Neural Language Models

• Performance depends strongly on scale! We keep getting better performance as we scale the model, data, and compute up!

Why LLMs?

Generalization

We can now use one single model to solve many NLP tasks

https://arxiv.org/pdf/1910.10683.pdf

Why LLMs?

Emergent Abilities

Some ability of LM is not present in smaller models but is present in larger models

https://docs.google.com/presentation/d/1yzbmYB5E7G8IY2-KzhmArmPYwwl7o7CUST1xRZDUu1Y/edit?resourcekey=0-6_TnUMoK WCk FN2BiPxmbw#slide=id.g1fc34b3ac18 0 27

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

https://arxiv.org/pdf/2005.14165.pdf

	No Prompt	Prompt
Zero-shot (os)	skicts = sticks	Please unscramble the letters into a word, and write that word: skicts = sticks
1-shot (1s)	chiar = chair skicts = sticks	Please unscramble the letters into a word, and write that word: chiar = chair skicts = sticks
Few-shot (FS)	chiar = chair [] pciinc = picnic skicts = sticks	Please unscramble the letters into a word, and write that word: chiar = chair [] pciinc = picnic skicts = sticks

https://www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec04.pdf

Pretraining + Fine-tuning Paradigm

Pretraining + Prompting Paradigm

- Fine-tuning (FT)
 - + Strongest performance
 - Need curated and labeled dataset for each new task (typically 1k-100k ex.)
 - Poor generalization, spurious feature exploitation
- Few-shot (FS)
 - + Much less task-specific data needed
 - + No spurious feature exploitation
 - Challenging
- One-shot (1S)
 - + "Most natural," e.g. giving humans instructions
 - Challenging
- Zero-shot (OS)
 - + Most convenient
 - o Challenging, can be ambiguous

Stronger task-specific performance

More convenient, general, less data

Emergent Capability - Chain of Thoughts Prompting

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Emergent Capability - Chain of Thoughts Prompting

Math Word Problems (free response)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm³, which is less than water. Thus, a pear would float. So the answer is no.

SayCan (Instructing a robot)

Human: How would you bring me something that isn't a fruit?

Explanation: the user wants something to eat that isn't a fruit. An energy bar is not a fruit, so I will bring the user an energy bar.

Plan: 1. find(energy bar) 2. pick(energy bar) 3. find(user) 4. put(energy bar) 5. done().

Math Word Problems (multiple choice)

Q: How many keystrokes are needed to type the numbers from 1 to 500? Answer Choices: (a) 1156 (b) 1392 (c) 1480 (d) 1562 (e) 1788

A: There are 9 one-digit numbers from 1 to 9. There are 90 two-digit numbers from 10 to 99. There are 401 three-digit numbers from 100 to 500.9 + 90(2) + 401(3) = 1392. The answer is (b).

Date Understanding

O: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943

Last Letter Concatenation

Q: Take the last letters of the words

A: The last letter of "Lady" is "v". The

Concatenating them is "ya". So the

in "Lady Gaga" and concatenate

last letter of "Gaga" is "a".

answer is va.

CSQA (commonsense)

Q: Sammy wanted to go to where the people were. Where might he go? Options: (a) race track (b) populated areas (c) desert (d) apartment (e) roadblock

A: The answer must be a place with a lot of people. Race tracks, desert. apartments, and roadblocks don't have a lot of people, but populated areas do. So the answer is (b).

Sports Understanding

Q: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."

A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no

Coin Flip (state tracking)

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

- → Standard prompting
- --- Chain-of-thought prompting
- --- Prior supervised best

Emergent Capability - Zero Shot CoT Prompting

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4. ✓

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

Emergent Capability - Zero Shot CoT Prompting

Emergent Capability - Self-Consistency Prompting

Emergent Capability - Least-to-Most Prompting

https://arxiv.org/pdf/2205.10625.pdf

Emergent Capability - Augmented Prompting Abilities

Advanced Prompting Techniques

- Zero-shot CoT Prompting
- Self-Consistency
- Divide-and-Conquer

Ask a human to

- Explain the rationale
- Double check the answer
- Decompose to easy subproblems

Large Language Models demonstrate some human-like behaviors!

Training Architectures

Encoder-decoder models (T5, BART)

Decoder-only models (GPT-X, PaLM)

http://jalammar.github.io/illustrated-transformer/

Training Objectives - UL2

What kinds of things does pretraining learn?

- Stanford University is located in ______, California. [Trivia]
- I put ____ fork down on the table. [syntax]
- The woman walked across the street, checking for traffic over ____ shoulder. [coreference]
- I went to the ocean to see the fish, turtles, seals, and ______. [lexical semantics/topic]
- Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie was ____. [sentiment]
- Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the _____. [some reasoning – this is harder]
- I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some basic arithmetic; they don't learn the Fibonnaci sequence]

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?

Chain-of-thought finetuning

Answer the following question by reasoning step-by-step.

The cafeteria had 23 apples. If they used 20 for lunch and bought 6 more, how many apples do they have?

Multi-task instruction finetuning (1.8K tasks)

Inference: generalization to unseen tasks

Q: Can Geoffrey Hinton have a conversation with George Washington?

Give the rationale before answering.

-320.4F

Language

model

originally. They used 20 to make lunch. So they had 23 -20 = 3. They bought 6 more apples, so they have 3 + 6 = 9.

The cafeteria had 23 apples

Geoffrey Hinton is a British-Canadian computer scientist born in 1947. George Washington died in 1799. Thus, they could not have had a conversation

together. So the answer is "no".

https://arxiv.org/pdf/2210.11416.pdf

Finetuning tasks

TO-SF

Commonsense reasoning
Question generation
Closed-book QA
Adversarial QA
Extractive QA
Title/context generation
Topic classification
Struct-to-text

55 Datasets, 14 Categories, 193 Tasks

Muffin

Natural language inference Closed-book QA
Code instruction gen. Conversational QA
Program synthesis Code repair
Dialog context generation ...

69 Datasets, 27 Categories, 80 Tasks

CoT (Reasoning)

Arithmetic reasoning Explanation generation
Commonsense Reasoning Sentence composition
Implicit reasoning ...

9 Datasets, 1 Category, 9 Tasks

Natural Instructions v2

Cause effect classification
Commonsense reasoning
Named entity recognition
Toxic language detection
Question answering
Question generation
Program execution
Text categorization

372 Datasets, 108 Categories, 1554 Tasks

- ❖ A <u>Dataset</u> is an original data source (e.g. SQuAD).
- A <u>Task Category</u> is unique task setup (e.g. the SQuAD dataset is configurable for multiple task categories such as extractive question answering, query generation, and context generation).
- ❖ A <u>Task</u> is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g. query generation on the SQuAD dataset.)

With chain-of-thought Without chain-of-thought Answer the following A haiku is a japanese Answer the following yes/no question yes/no question. three-line poem. Instruction by reasoning step-by-step. That is short enough yes without Can you write a whole to fit in 280 exemplars Can vou write a whole Haiku in a Haiku in a single tweet? characters. The single tweet? answer is ves. Q: Answer the following Q: Answer the following yes/no question by yes/no question. reasoning step-by-step. Could a dandelion suffer Could a dandelion suffer from hepatitis? from hepatitis? Instruction A haiku is a japanese A: Hepatitis only affects organisms with livers. A: no three-line poem. with exemplars Dandelions don't have a liver. The answer is no. ves That is short enough Q: Answer the following Q: Answer the following yes/no question by to fit in 280 yes/no question. reasoning step-by-step. characters. The Can you write a whole Haiku Can you write a whole Haiku in a single tweet? answer is yes. in a single tweet? A: A:

Finetune - RLHF

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Explain war...

0

People went to

A

Explain gravity...

C

Moon is natural

satellite of...

d

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Application - ChatGPT

ChatGPT

Examples

"Explain quantum computing in simple terms" →

"Got any creative ideas for a 10 year old's birthday?" →

"How do I make an HTTP request in Javascript?" →

Capabilities

Remembers what user said earlier in the conversation

Allows user to provide followup corrections

Trained to decline inappropriate requests

Limitations

May occasionally generate incorrect information

May occasionally produce harmful instructions or biased content

Limited knowledge of world and events after 2021

Application - ChatGPT

https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1

Finetune - Bootstrapping

- Q: What can be used to carry a small dog? Answer Choices:
- (a) swimming pool
- (b) basket
- (c) dog show
- (d) backyard
- (e) own home
- A: The answer must be something that can be used to carry a small dog. Baskets are designed to hold things. Therefore, the answer is basket (b).

Finetune - Bootstrapping

Large Language models Risks

- LLMs make mistakes
 (falsehoods, hallucinations)
- LLMs can be misused (misinformation, spam)
- LLMs can cause harms
 (toxicity, biases, stereotypes)
- LLMs can be attacked
 (adversarial examples, poisoning, prompt injection)
- LLMs can be useful as defenses (content moderation, explanations)

Large language models associate Muslims with violence

<u>Abubakar Abid</u>, <u>Maheen Farooqi</u> & <u>James Zou</u> ⊠

Nature Machine Intelligence 3, 461–463 (2021) | Cite this article

Resources for further reading

- https://web.stanford.edu/class/cs224n/
- https://stanford-cs324.github.io/winter2022/
- https://stanford-cs324.github.io/winter2023/
- https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
- https://rycolab.io/classes/llm-s23/
- https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
- https://www.jasonwei.net/blog/emergence

Emergent Capability - Decomposed Prompting

Decomposed Prompting

Training Objectives - UL2

Training Techniques - Parallelism

An illustration of various parallelism strategies on a three-layer model. Each color refers to one layer and dashed lines separate different GPUs.

Training Techniques - Parallelism

