CSC413/2516 Tutorial 11 Reinforcement Learning, Policy Gradient

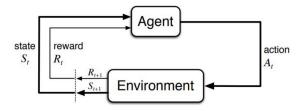
Based on Slides by Irene Zhang, Sheng Jia, Stephen Zhao

Winter, 2023

Matin Moezzi

CSC413/2516 Tutorial 11

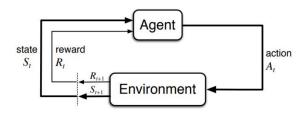
- s_t: state at time step t. Is a complete description of the task/environment (assume full observability for simplicity in this tutorial), and is input to the agent
- a_t : action taken by the agent at time step t (output from the agent)



Problem Setup

State

- *s_t*: state at time step *t*. Is a complete description of the task/environment (assume full observability for simplicity in this tutorial), and is input to the agent
- a_t : action taken by the agent at time step t (output from the agent)



• Examples:

- s_t = agent location on grid, a_t = movement direction
- $s_t = financial data$, $a_t = buy or sell$
- s_t = sequence of frames from a video, a_t = game action / robot movement

Matin Moezzi

Problem Setup Agent's Policy

 "Agent" is an abstract concept, but we can formulate how the agent behaves by a policy. This can be a conditional distribution that is parameterized by θ:

$$p_{\theta}(a_t|s_t) = \pi_{\theta}(a_t|s_t) = \pi(a_t|s_t;\theta)$$

Different implementations of a stochastic policy

$$p_{\theta}(a_t|s_t) = \pi_{\theta}(a_t|s_t) = \pi(a_t|s_t;\theta)$$

Based on the problem, implement different types of stochastic policy

- S = state space (set of possible states)
- $\mathcal{A} =$ action space (set of possible actions)
- If both S and A are discrete and small, can simply use a table of mappings from states to probability distributions over actions

Different implementations of a stochastic policy

$$p_{\theta}(a_t|s_t) = \pi_{\theta}(a_t|s_t) = \pi(a_t|s_t;\theta)$$

Based on the problem, implement different types of stochastic policy

- S = state space (set of possible states)
- A =action space (set of possible actions)
- If both S and A are discrete and small, can simply use a table of mappings from states to probability distributions over actions
- If A is discrete, but S is continuous or too large (e.g. Atari), use a function approximator such as NN to map the state vector s to the distribution over actions using softmax for the output layer

Different implementations of a stochastic policy

$$p_{\theta}(a_t|s_t) = \pi_{\theta}(a_t|s_t) = \pi(a_t|s_t;\theta)$$

Based on the problem, implement different types of stochastic policy

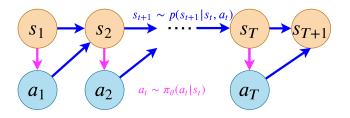
- S = state space (set of possible states)
- $\mathcal{A} =$ action space (set of possible actions)
- If both S and A are discrete and small, can simply use a table of mappings from states to probability distributions over actions
- If \mathcal{A} is discrete, but \mathcal{S} is continuous or too large (e.g. Atari), use a function approximator such as NN to map the state vector s to the distribution over actions using softmax for the output layer
- If both S and A are continuous or too large (e.g. Robot control), map s to parameters associated with distributions such as μ and σ² for Gaussian distribution. Then sample actions from the distribution (A simpler solution is to discretize continuous action space. e.g. OpenAl Dota2 bot [1])

Problem Setup Trajectory

- au = trajectory, a record of states and actions over au time steps
- Trajectory is a set of random variables, and its distribution is a joint distribution over 2*T* + 1 r.v.:

$$au = (s_1, a_1, s_2, ..., s_T, a_T, s_{T+1})$$

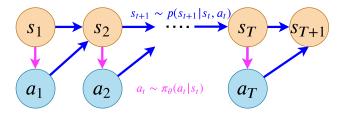
 $p(au; heta) = p(s_1, a_1, s_2, ..., s_T, a_T, s_{T+1}; heta) = (\star)$



• We can simplify using conditional independences from DAG (Markov assumption, state is a complete description):

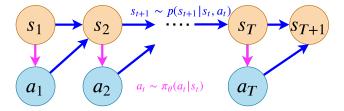
$$(\star) = \rho_0(s_1) \Pi_{t=1}^T \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

• Remark: we will use $p(\tau; \theta)$ to denote that changing our policy parameters θ induce a different trajectory distribution



 "Running/Executing the agent in a environment" means ancestral sampling from this DAG. (Sample the parent node and successively sample the child nodes)

$$s_1 \sim
ho_0(s) \quad a_t \sim \pi_{oldsymbol{ heta}}(a_t|s_t) \quad s_{t+1} \sim p(s_{t+1}|s_t,a_t)$$



Objective in Reinforcement Learning Reward, Return

• Reward $r_t = R(s_t, a_t)$ measures how well action a_t is in state s_t for the agent. This is computed by a blackbox function $R(s_t, a_t)$ from the environment

Objective in Reinforcement Learning Reward, Return

- Reward $r_t = R(s_t, a_t)$ measures how well action a_t is in state s_t for the agent. This is computed by a blackbox function $R(s_t, a_t)$ from the environment
- Return is the cumulative reward for the trajectory *τ*. (Consider finite-horzion undiscounted version in this tutorial)

$$R(\tau) = \sum_{t=1}^{T} R(s_t, a_t)$$

Objective in Reinforcement Learning Reward, Return

- Reward $r_t = R(s_t, a_t)$ measures how well action a_t is in state s_t for the agent. This is computed by a blackbox function $R(s_t, a_t)$ from the environment
- Return is the cumulative reward for the trajectory *τ*. (Consider finite-horzion undiscounted version in this tutorial)

$$R(au) = \sum_{t=1}^{T} R(s_t, a_t)$$

Return is also a random variable because it is a function of 2T random variables in the trajectory

Objective in Reinforcement Learning Expected Return

As R(τ) is random, the objective is to maximize the expected return

 E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
 write it as the expectation under τ distribution p(τ; θ):

$$\mathcal{J}(oldsymbol{ heta}) = \mathbb{E}\left[R(oldsymbol{ au})
ight] = \mathbb{E}_{oldsymbol{ au} \sim oldsymbol{
ho}(au;oldsymbol{ heta})}\left[R(oldsymbol{ au})
ight] = (\star)$$

Objective in Reinforcement Learning Expected Return

$$\mathcal{J}(oldsymbol{ heta}) = \mathbb{E}\left[\mathsf{R}(oldsymbol{ au})
ight] = \mathbb{E}_{oldsymbol{ au} \sim oldsymbol{
ho}(au;oldsymbol{ heta})}\left[\mathsf{R}(oldsymbol{ au})
ight] = (\star)$$

And by ancestral sampling, we can further simplify:

$$(\star) = \mathop{\mathbb{E}}_{\substack{s_1 \sim \rho_0(s) \\ a_t \sim \pi_\theta(a_t | s_t) \\ s_{t+1} \sim p(s_{t+1} | s_t, a_t)}} \left[\sum_{t=1}^T R(s_t, a_t) \right]$$

State Value Function

 State Value Function V^π(s) of a state s under policy π : the expected discounted return if we start in s and follow π

$$V^{\pi}(\mathbf{s}) = \mathbb{E}\left[G_t \mid \mathbf{s}_t = \mathbf{s}\right] = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \mid \mathbf{s}_t = \mathbf{s}\right]$$

• Computing the value function is generally impractical because we do not have the model of the environment

$$\pi(s) \leftarrow \arg \max_{a} \sum_{s', r} p\left(s', r \mid s, a\right) \left[r + \gamma V\left(s'\right)\right]$$

• The benefit is credit assignment: see directly how an action affects future returns rather than wait for rollouts

Action-State Value Function

 Action-State Value Function Q^π(s, a) of a state s and action a under policy π is the expected discounted return if we start in s, take action a and then follow π

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}\left[G_t \mid \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a}\right]$$

• Relationship:

$$V^{\pi}(\mathbf{s}) = \sum_{\mathbf{a}} \pi(\mathbf{a} \mid \mathbf{s}) Q^{\pi}(\mathbf{s}, \mathbf{a})$$

Optimal action:

 $\arg \max Q^{\pi}(\mathbf{s}, \mathbf{a})$

Optimal Bellman Equation

- The optimal policy π* is the one that maximizes the expected discounted return, and the optimal action-value function Q* is the action-value function for π*.
- The Optimal Bellman Equation gives a recursive formula for Q^* :

$$Q^*(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{p(\mathbf{s}'|\mathbf{s}, \mathbf{a})} \left[\max_{\mathbf{a}'} Q^* \left(\mathbf{s}_{t+1}, \mathbf{a}' \right) \mid \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a} \right]$$

• This system of equations characterizes the optimal action-value function. So maybe we can approximate *Q*^{*} by trying to solve the optimal Bellman equation!

Q-learning: Off-policy TD learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

 $\begin{array}{l} \mbox{Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ \\ \mbox{Initialize $Q(s,a)$, for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ \\ \mbox{Loop for each episode:} \\ \mbox{Initialize S \\ \mbox{Loop for each step of episode:} \\ \mbox{Choose A from S using policy derived from Q (e.g., ε-greedy) \\ \mbox{Take action A, observe R, S' \\ \mbox{$Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$ } \\ \mbox{$S \leftarrow S'$ \\ \\ \mbox{until S is terminal} $ \end{array}$

(日) (四) (日) (日) (日)

Policy Optimization by Policy Gradient Ascent A method to "skill up" the agent

• Our goal: find the optimal policy $\theta^* = \operatorname{argmax}_{\theta} \mathcal{J}(\theta)$

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy $\pi_{\theta_k}(a_t|s_t)$ to $\pi_{\theta_{k+1}}(a_t|s_t)$ for maximizing $\mathcal{J}(\theta)$ by gradient ascent:

 $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta})|_{\boldsymbol{\theta}_k}$

Policy Optimization by Policy Gradient Ascent A method to "skill up" the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy $\pi_{\theta_k}(a_t|s_t)$ to $\pi_{\theta_{k+1}}(a_t|s_t)$ for maximizing $\mathcal{J}(\theta)$ by gradient ascent:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha \nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta})|_{\boldsymbol{\theta}_k}$$

Gradient of the objective w.r.t policy (Policy Gradient)

$$\nabla_{\boldsymbol{\theta}} \mathcal{J}(\boldsymbol{\theta})|_{\boldsymbol{\theta}_{k}} = \mathbb{E}_{\substack{s_{1} \sim \rho_{0}(s) \\ a_{t} \sim \pi_{\boldsymbol{\theta}_{k}}(a_{t}|s_{t}) \\ s_{t+1} \sim \rho(s_{t+1}|s_{t},a_{t})}} \left[\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}_{k}}(a_{t}|s_{t}) \left[\sum_{t'=1}^{T} R(s_{t'},a_{t'}) \right] \right]$$

Putting the above together, we get the most simple policy gradient method, the REINFORCE algorithm:

- **9** Sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run in the environment)
- **2** Compute the gradient estimate: $\nabla_{\theta} \mathcal{J}(\theta)|_{\theta_{k}} \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \log \pi_{\theta_{k}}(a_{t}^{(i)}|s_{t}^{(i)}) \left[\sum_{t'=1}^{T} R(s_{t'}^{(i)}, a_{t'}^{(i)}) \right] \right]$
- Opdate the policy via gradient ascent
- Repeat the above

Deep Q-Network

- Represent the state-action value function, Q with a deep neural network with parameters θ: Q(s, a; θ)
- Remember Optimal Bellman Equation:

$$Q^*(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\rho(\mathbf{s}'|\mathbf{s}, \mathbf{a})} \left[\max_{\mathbf{a}'} Q^* \left(\mathbf{s}_{t+1}, \mathbf{a}' \right) \mid \mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a} \right]$$

- **3** Forward Pass Loss function: $L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s, a; \theta_i))^2 \right]$ where $y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) \mid s, a \right]$
- Backward Pass
 Gradient update (with respect to Q-function parameters θ):

$$\nabla_{\theta_{i}}L_{i}\left(\theta_{i}\right) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q\left(s', a'; \theta_{i-1}\right) - Q\left(s, a; \theta_{i}\right)\right) \nabla_{\theta_{i}}Q\left(s, a; \theta_{i}\right)\right]$$

 Christopher Berner et al. "Dota 2 with Large Scale Deep Reinforcement Learning". In: arXiv preprint arXiv:1912.06680 (2019).

< 1 k