
CSC413/2516 Tutorial 11
Reinforcement Learning, Policy Gradient

Based on Slides by Irene Zhang, Sheng Jia, Stephen Zhao

Winter, 2023

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 1 / 24

Problem Setup
State

st : state at time step t. Is a complete description of the
task/environment (assume full observability for simplicity in this
tutorial), and is input to the agent

at : action taken by the agent at time step t (output from the agent)

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 2 / 24

Problem Setup
State

st : state at time step t. Is a complete description of the
task/environment (assume full observability for simplicity in this
tutorial), and is input to the agent
at : action taken by the agent at time step t (output from the agent)

Examples:
st = agent location on grid, at = movement direction
st = financial data, at = buy or sell
st = sequence of frames from a video, at = game action / robot
movement

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 3 / 24

Problem Setup
Agent’s Policy

“Agent” is an abstract concept, but we can formulate how the agent
behaves by a policy. This can be a conditional distribution that is
parameterized by θ:

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 4 / 24

Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

S = state space (set of possible states)

A = action space (set of possible actions)

If both S and A are discrete and small, can simply use a table of
mappings from states to probability distributions over actions

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 5 / 24

Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)

Based on the problem, implement different types of stochastic policy

S = state space (set of possible states)

A = action space (set of possible actions)

If both S and A are discrete and small, can simply use a table of
mappings from states to probability distributions over actions

If A is discrete, but S is continuous or too large (e.g. Atari), use a
function approximator such as NN to map the state vector s to the
distribution over actions using softmax for the output layer

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 6 / 24

Problem Setup
Different implementations of a stochastic policy

pθ(at |st) = πθ (at |st) = π (at |st ;θ)
Based on the problem, implement different types of stochastic policy

S = state space (set of possible states)
A = action space (set of possible actions)
If both S and A are discrete and small, can simply use a table of
mappings from states to probability distributions over actions
If A is discrete, but S is continuous or too large (e.g. Atari), use a
function approximator such as NN to map the state vector s to the
distribution over actions using softmax for the output layer
If both S and A are continuous or too large (e.g. Robot control),
map s to parameters associated with distributions such as µ and σ2

for Gaussian distribution. Then sample actions from the distribution
(A simpler solution is to discretize continuous action space. e.g. OpenAI

Dota2 bot [1])
Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 7 / 24

Problem Setup
Trajectory

τ = trajectory, a record of states and actions over T time steps

Trajectory is a set of random variables, and its distribution is a joint
distribution over 2T + 1 r.v.:

τ = (s1, a1, s2, ..., sT , aT , sT+1)

p(τ ;θ) = p (s1, a1, s2, ..., sT , aT , sT+1;θ) = (⋆)

�1 �2 �� ��+1

�1 �2 ��

∼ �(| ,)��+1 ��+1 �� ��

∼ (|)�� �� �� ��

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 8 / 24

Problem Setup
Trajectory

We can simplify using conditional independences from DAG (Markov
assumption, state is a complete description):

(⋆) = ρ0(s1)Π
T
t=1πθ(at |st)p(st+1|st , at)

Remark: we will use p(τ ;θ) to denote that changing our policy
parameters θ induce a different trajectory distribution

�1 �2 �� ��+1

�1 �2 ��

∼ �(| ,)��+1 ��+1 �� ��

∼ (|)�� �� �� ��

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 9 / 24

Problem Setup
How to sample a trajectory (Run/Execute an agent)

“Running/Executing the agent in a environment” means ancestral
sampling from this DAG. (Sample the parent node and successively
sample the child nodes)

s1 ∼ ρ0(s) at ∼ πθ(at |st) st+1 ∼ p(st+1|st , at)

�1 �2 �� ��+1

�1 �2 ��

∼ �(| ,)��+1 ��+1 �� ��

∼ (|)�� �� �� ��

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 10 / 24

Objective in Reinforcement Learning
Reward, Return

Reward rt = R(st , at) measures how well action at is in state st for
the agent. This is computed by a blackbox function R(st , at) from
the environment

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 11 / 24

Objective in Reinforcement Learning
Reward, Return

Reward rt = R(st , at) measures how well action at is in state st for
the agent. This is computed by a blackbox function R(st , at) from
the environment

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 12 / 24

Objective in Reinforcement Learning
Reward, Return

Reward rt = R(st , at) measures how well action at is in state st for
the agent. This is computed by a blackbox function R(st , at) from
the environment

Return is the cumulative reward for the trajectory τ . (Consider
finite-horzion undiscounted version in this tutorial)

R(τ) =
T∑
t=1

R(st , at)

Return is also a random variable because it is a function of 2T
random variables in the trajectory

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 13 / 24

Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ)] = Eτ∼p(τ ;θ) [R(τ)] = (⋆)

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 14 / 24

Objective in Reinforcement Learning
Expected Return

As R(τ) is random, the objective is to maximize the expected return
E [R(τ)] w.r.t θ. By the law of the unconscious statistician, we can
write it as the expectation under τ distribution p(τ ;θ):

J (θ) = E [R(τ)] = Eτ∼p(τ ;θ) [R(τ)] = (⋆)

And by ancestral sampling, we can further simplify:

(⋆) = E
s1∼ρ0(s)

at∼πθ(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

R(st , at)

]

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 15 / 24

State Value Function

State Value Function V π(s) of a state s under policy π : the
expected discounted return if we start in s and follow π

V π(s) = E [Gt | st = s] = E

[∞∑
i=0

γ i rt+i | st = s

]

Computing the value function is generally impractical because we do
not have the model of the environment

π(s)← argmax
a

∑
s′,r

p
(
s ′, r | s, a

) [
r + γV

(
s ′
)]

The benefit is credit assignment: see directly how an action affects
future returns rather than wait for rollouts

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 16 / 24

Action-State Value Function

Action-State Value Function Qπ(s, a) of a state s and action a under
policy π is the expected discounted return if we start in s, take action
a and then follow π

Qπ(s, a) = E [Gt | st = s, at = a]

Relationship:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Optimal action:
argmaxQπ(s, a)

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 17 / 24

Optimal Bellman Equation

The optimal policy π∗ is the one that maximizes the expected
discounted return, and the optimal action-value function Q∗ is the
action-value function for π∗.

The Optimal Bellman Equation gives a recursive formula for Q∗ :

Q∗(s, a) = r(s, a) + γEp(s′|s,a)

[
max
a′

Q∗ (st+1, a
′) | st = s, at = a

]
This system of equations characterizes the optimal action-value
function. So maybe we can approximate Q∗ by trying to solve the
optimal Bellman equation!

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 18 / 24

Q-learning: Off-policy TD learning

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 19 / 24

Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Our goal: find the optimal policy θ∗ = argmaxθJ (θ)

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 20 / 24

Policy Optimization by Policy Gradient Ascent
A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy πθk
(at |st) to

πθk+1
(at |st) for maximizing J (θ) by gradient ascent:

θk+1 = θk + α∇θJ (θ)|θk

Gradient of the objective w.r.t policy (Policy Gradient)

∇θJ (θ)|θk
= E

s1∼ρ0(s)
at∼πθk

(at |st)
st+1∼p(st+1|st ,at)

[
T∑
t=1

∇θ log πθk
(at |st)

[
T∑

t′=1

R(st′ , at′)

]]

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 21 / 24

REINFORCE Algorithm

Putting the above together, we get the most simple policy gradient
method, the REINFORCE algorithm:

1 Sample
{
τ i
}
from πθ (at | st) (run in the environment)

2 Compute the gradient estimate:

∇θJ (θ)|θk
≈ 1

N

∑N
i=1

[∑T
t=1 log πθk

(a
(i)
t |s

(i)
t)

[∑T
t′=1 R(s

(i)
t′ , a

(i)
t′)

]]
3 Update the policy via gradient ascent

4 Repeat the above

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 22 / 24

Deep Q-Network

1 Represent the state-action value function, Q with a deep neural
network with parameters θ: Q(s, a; θ)

2 Remember Optimal Bellman Equation:

Q∗(s, a) = r(s, a) + γEp(s′|s,a)

[
max
a′

Q∗ (st+1, a
′) | st = s, at = a

]
3 Forward Pass

Loss function: Li (θi) = Es,a∼ρ(·)

[
(yi − Q (s, a; θi))

2
]
where

yi = Es′∼E [r + γmaxa′ Q (s ′, a′; θi−1) | s, a]
4 Backward Pass

Gradient update (with respect to Q-function parameters θ):

∇θiLi (θi) = E
[
(r + γmax

a′
Q
(
s ′, a′; θi−1

)
− Q (s, a; θi))∇θiQ (s, a; θi)

]
Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 23 / 24

Reference

[1] Christopher Berner et al. “Dota 2 with Large Scale Deep
Reinforcement Learning”. In: arXiv preprint arXiv:1912.06680 (2019).

Matin Moezzi CSC413/2516 Tutorial 11 Winter, 2023 24 / 24

	References

